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Abstract: The shorelines and near-shore bottoms of Alabama's coastal area
are in a dynamic state, constantly adjusting to the combined effects
of natural processes and man's intervention. Approximately 56 per-
cent of the shoreline is eroding. Small amounts of erosion may be-
come critical in developed areas. In general, erosion is of most
concern along the western shore, at Dauphin Island, and along the
north shore of Morgan Peninsula where waterfront residential areas
are directly affected. Sediments derived from materials carried by
the Mobile River system and by currents eroding the shorelines are
gradually filling Mobile Bay. Computer analysis of bathymetry shows
that the lower half of the bay is filling most rapidly, but the pattern
of deposition is very complex.

A NASA computer measurement of a part of the shoreline of Alabama
used Landsat images and provided the basis for a preliminary esti-
mate of the total shoreline length. This estimate is 1,313 km (816 mi.),
which is considerably higher than map measurements made by conven-
tional means because the technique measures the intricate detail of
upper estuaries and other shoreline indentations.
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SHORELINE AND BATHYMETRIC CHANGES IN THE
COASTAL AREA OF ALABAMA

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The shorelines and near-shore bottoms of Alabama's coastal area are in a
dynamic state, constantly adjusting to the combined effects of natural processes
and man's intervention. Somé segments of the shoreline have been armored or
stabilized by seawalls and are no longer free to adjust naturally to maintain a
state of dynamic equilibrium. Approximately 56 percent of the shoreline of‘coastal
Alabama is eroding. This erosion varies from 0 - 1.5 m (0 - 5 ft) per yéar to more
than 3.0 m (10 ft) per year. Small amounts of erosion may become critical in devel-=
oped areas. In general, erosion is of most concern along the western shore, at Dau-
phin Island, and along the north shore of Morgan Peninsula where waterfront residen-
tial areas are directly affected. Erosion along the western shore averages 0.97 m
(3.17 ft) per year. The maximum amount of erosion along the western shore occurs
at Cedar Point which experiences an average of 2. 60 m (8.56 ft) recession per yeaf.
At Dauphin Island there have been rapid and disatrous shoreline alter"ations .caused
by hurricanes, especially along the western spit. | The northern shore of Morgan
Peninsula between Seymour Bluff and Catlins Bayou haé eroded an average of 52 m

(170 ft) between 1917 and 1974. Although other shores show rates of erosion equal
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to or greater than the rates affecting these areas, in most cases, those shores
are uninhabited.

Sediments derived from materials carried by the Mobile River system and
by currents eroding the shorelines are gradually filling Mobile Bay. The lower
half of the bay is filling more rapidly than the upper half, according to computa-
tions based on soundings from nautical charts dated 1852, 1920, and 1973. Areas
of most pronounced deposition are located in the upper bay where spoils disposal
is occurring, and in the lower bay north of the tidal pass. However, the sedimen-
J tation pattern is very complex, with many areal variations that deserve further
analysis.

Of the many passes and inlets within the changing configurations of the coastal
area, the changing configurations of Petit Bois Pass, the Mobile Bay tidal pass,
© Perdido Pass, and Pass Drury were analyzed historically. Two of the larger passes,
the Mobile Bay tidal pass and Petit Bois Pass, appear to occupy the drowned channels
of pre-Pleistocene rivers, and to be ""pinned" in their positions; other smaller passes
such as Perdido Pass and Pass‘aux Herons must be dredged constantly to keep them
navigable, and former natural passes such as Pass Drury have been completely filled
and have been relocated artificially.

The length of Alabama's shoreline has been measured in various ways with a

. wide variety of tools. As a result, the true shoreline length is unknown; it has been .
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officially reported as anywhere from 491 km (305 mi.) to 1,313 km (816 mi.).
Manual measurements using maps and charts have omitted many intricate pat-

terns of upper estuaries which should be included as part of Alabama's shoreline.
The NASA measurements included in the present study were done by computer
analysis of two satellite images of different dates, and yielded an average length

of 1,000.4 km (621.5 mi.) measured from the Mississippi line to 87°42' W. (south of
Foley. Measurement of the enfire shoreline of Alabama was not within the scope of
this project. A ratio technique'provides an estimate for the total shoreline if done
by this computer technique of 1,313 km (816 mi.). A final measurement of Alabama's
shoreline will be done by NASA's Earth Resources Laboratory in the near future and
the authors recommend that the results, when reported, be adopted by the Coastal

Area Board as the total length of the state's shoreline.

Recommendations

This assessment of shoreline and bathymetric changes in the coastal area of
Alabama is concluded with the folloWing recommendations:
1) A further study should Be initiated which utilizes the oldest useable NOS (for-
merly C&GS) topographic and bathymetric data available (approximately 1847) to
determine shoreline and bathymetric changes over a broader épan of time to follow

up this report. As complete an inventory as possible of the past and present activities



of man in the coastal area should be included. This study would include establish-
ing a baseline framework of geologic data for the coastal region. Such work was
beyond' the scope of the present project, since it would involve the geologic study

of the sediments accumulated in the coastal area since sea level reached its present
stand.

2) A 1975 coastal zone land-use assessment should be conducted and compared
with the results of this study to determine what impact shoreline erosion has on com-
mercial, transportation and residential shore land uses in the present and in the
future.

3) A series of shoreline profiles should be established at selected points showing
erosion, accretion, or dynamic equilibrium. The profiles should be redone semi-
annually to establish short-term and seasonal variation so this monitoring activity
should become a permanent part of the Coastal Area Board program. Summary
technical reports on the short-term changes detected on the profiles and ﬁpdated
shoreline analysis using the latest remote sensing inclyuding automatic processing

of Landsat imagery for shoreline changes and land-us;—z changes should be prepared
annually.

4) The wetlands of the coastal zone should be mapped in detail, using refnotely

sensed data augmented by field verification. The maps would be a valuable and



necessary complement to other physical and cultural (land-use) data to be gen-
erated. This wetland study would include mapping of the inland/upland boundary

and high-tide marks as indicated by plant communities.



INTRODUCTION

The shorelines and near-shore bottom areas of coastal Alabama are con-
stantly changing. This change is a result of both natural processes and anthro-
'pogenetic actions. Changes caused by natural processes may occur almost in-
stantly, sometimes disastrously. High winds, waves, and extremely high tides
generated By tropical storms and hurricanes may cause immediate and highly
visible changes in the shoreline and near-shore bathymetry. In contrast, the
rise and fall of the tides, wind and wave action, and the flow of tidal currents,
active over tens, hundreds, or thousands of years, make their mark on the con-
figuration of the shoreline and near-shore bathymetry slowly and sometimes im-
perceptibly. Because these processes do operate so slowly, a single observer
can only record é small part of the long-term changes they cause, and must rely
on the existing written records of previous observers in the form of manuscripts,
maps, charts, and photographs.

In Mobile Bay and coastal Alabama, there are more extensive changes than
those caused by nature - these are the changes caused by man's activities. Since
the first colonization of the Alabama coast by the French in the early 1700's, man
has been improving the bay by deepening natural channels; constructing wharves,
jett}es, groins, and seawalls; and filling in the bay to produce valuable real estate

from the salt marshes. The effects of these constructions and repairs on the



shoreline and near-shore bathyrﬁetry are infinitely variable with location, type,
and e_xtent of construction. In some instances, construction may cause extensive
changes in the shoreline and near-shore bottom configuration that are easily meas-
urable over a short time span; in other instances, there is little or no discernible

alteration.

Changes in the shoreline and near-shore bottom can have great impact upon
the navigation, fisheries, recreation, and residential uses of the coastal waters.
Shoaling of important passes, inlets, and ship channels increase hazards to safe
navigation and incur high costs of sediment removal and disposition. The depo-
sition of sediment over viable oyster reefs can cause the loss of a valuable fish-
ery resource and mean loss of livelihood to many coastal fishermen. Shoreline
erosion may mean increased expense for seawalls, groins, orrevetments to the
recreation cottage owner or permanent resident, not to mention the impairment
of scenic vistas caused by such constructions. Valuable waterfront property may
be lost and buildings damaged or destroyed by shoreline erosion. Many residents
and the sports fisheries suffer when a tidal inlet such as Perdido Pass is partially
obstructed and rendered unsafe during rough we;;ther. Great expense is incurred
on the part of local, state and federal governments to construct jetties and seawalls

to control sediment deposition.



Shoreline erosion and near-shore bottom changes are not simply subjects
of academic interest, but are subjects of great concern and interest to the many
people of Alabama's coastal area who are directly or indirectly affected; but, the

question remains, how much, how long, and for what reason do these changes

ocecur?

Objective

The objective of this report is the documehtation of the direction and magni-
tude of the movement of the coastal shoreline and changes of near-shore bottoms
of Alabama through the use of vintage nautical charts, National chanic and}Atmos—
pheric Administration (N.O.A. A.) topographic sheets, U.S. Geological Sur\./ey topo-
graphic maps, air phétos, and satellite imagery. Primary interest has been pla;:ed
on those trends measurable since the early 1900's, but in some instances trends have
been analyzed from the mid-1880's to the present.

This project is unique in that it brings new techniques to the solving of prob-
lems in a relatively small but dynamic area. Paramount among these new tech-
niques is applied remote sensing, encompassing a group of surveillance techniqlies
including aerial and space photography; and computer cartography using the SYMAP

program.



Much of the more recent data utilized in the study represents the state of
the art in remote-sensing technology. Sources such as multispectral Landsat-1
imagery, space photography, high-altitude and low-altitude color infrared photog-
raphy, conventional black-and-white aerial photography, and thermal infrared
imagery have all been carefully analyzed. A complete listing of the types and
dates of all data used in the research is provided in appendices A and B. A gen-
eral discussion of atmospheric factors precedes the shoreline and bathymetric

presentation.

Methodology

General
Historic shoreline and bathymetric change assessment requires the col-
lection of all available data concerning past shorelines and bathymetry. These
data include vintage and recent nautical charts by the National Ocean Survey;
vintage maps by the French colonists; topographic surveys by the U.S. Geologi-
cal Survey; and all available air photos and remote-sensing imagery, including

Skylab and Landsat-1 imagery.

Shoreline Changes

Understandably, the available data are of various accuracies and scales.

For analysis of shoreline changes, the usable data were reduced to a common
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base.. The base selected was the latest U.S. Geological Survey 75-minute topo-
graphic sheets (1:24,000) or earlier U.S. Geological Survey 15-minute topographic
sheets (1:62,500) for areas where the former were unavailable.

Whenever possible, opaque prints were converted to positive transparencies
at a scale suitable for use in the K & E Kargl photo-rectifier. This machine was
used to reduce or enlarge data to the scales of the base maps while simultaneously
allowing for the correction of small distortions inherent in the original data. Where
prints could not be converted to transparencies, a Focalmatic desk projector (opaque
projector)was used to transfer the shorelines to the base map. Once the selected
data were compiled at the base scales, segments of the resulting shoreline configu-
rations were quantitatively analyzed to provide information concerning the linear
extent of shoreline erosion or accretion and, where appropriate, the area of land
lost or gained. All areas were measured with a polar planimeter. At selected
locations identifiable on the base maps (U.S. Geological Survey topographic sheets),
the tqtal change of the shoreline was determined and the rates of change for various
intervals of time were calculated. In some areas the average erosional rates were
determined by planimetering the area of erosional or accretional change for a par-
ticular shoreline segment and dividing this figure by the length of the shoreline seg-

ment.,

Il T I I B B D B BE D R B B .
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Bathymetric Changes

National Ocean Survey charts of Mobile Bay containing hydrographic surveys
for the years 1852 (Coast Chart no. 188, published in 1856), 1920 (U.S. Coast and
Geodetic Survey no. 1266, published in 1921), and 1973 (U.S. Army Corps of Engi-
neers Navigation Maps of Gulf Intercoastal Waterway, New Orleans, LA, to Apa-
lachee Bay, FL, map 6, 7, and 8) were used to conduct an analysis of bathymetric
changes in Mobile Bay and vicinity. A 0.5° latitude by 0. 5° longitude grid was super-
imposed on each of the three charts. The depth of water at each grid intersection on
each chart was interpolated and stored on punch cards. A computer\program called
SYMAP, developed by the Laboratory for Computer Graphics and Spatial Analysis,
Harvard Center for Environmental Design Studies, Graduate School of Design, Har-
vard University, Cambridge, MA, was used to produce 12 maps showing the bathy-
metry, the areas of deposition, and the areas of washout between 1852 and 1920,

1920 and 1973, and 1852 and 1973.

Factors Determining Accuracy of Results

General
Assessing long-term shoreline changes by comparison of vintage National
Ocean Survey (formerly U.8S. Coast and Geodetic Survey) topographic sheets, U.S.
Geological Survey topographic sheets, and remotely sensed data, all at differing
scales, mapping detail, and accuracies, must obviously introduce some question

as to the accuracy of results derived from these data. Aside from the accuracy
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of the original data, there may be problems in interpreting shorelines from aerial
photography or other remotely-sensed imagery, and there certainly are carto-
graphic difficulties in compiling data using different datums or lacking horizontal
control ,' and in transferring shorelinés to a common base. Once all data are com-
piled on a common base, there are limits to the accuracy of measurements of

shoreline changes and determinations of average changes and rates of change.

Accuracy of Original Data

U.S. Coast and Geodetic Survey Topographic Surveys

The degree of accuracy of the early surveys depended upon the purpose of
the survey, its scale and date, the standards for survey work then in use, the
relative importance of the area surveyed, and the ability and care that the indi-

vidual Surveyor exercised in his work (Shalowitz, 1964). However, a high degree

of accuracy does not necessarily mean a high degree of detail; this depended upon
the importance of a shoreline area to the purposes of the survey, as seen by the
surveyor. Thus, in many shoreline areas, shoreline éegments were sketched

‘in between surveyed control. This is especially true of marshy areas where,

of necessity, the outer edge of the marsh and not the actual high water line was
mapped, as in cases where details of minor tidal creeks were omitted. In gen-
eral, the horizontal accuracy of the mean high water line on the early surveys

is within a maximum error of 10 m (33 ft) and may possibly be much more
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accurate (Shalowitz, 1964). After World War II, photogrammetric mapping tech-
niques further increased the accuracy of the survey. In summation, Shalowitz
(1964), states:
There is probably little doubt but that the earliest records
of changes in our coastline that are on a large enough scale and in
sufficient detail to justify their use for quantitative study are those
made by the Coast Survey. These surveys were executed by com-
petent and careful engineers and wefe practically all based on a
geodetic network which minimized the possibility of large errors
being introduced. They therefore represent the best evidence
available of the condition of our coastline a hundred or more years
ago, and the courts have repeatedly recognized their competency in

this respect . ...

U.S. Geological Survey Topographic Maps

HE TN BN 0 ) B R SN BN A B B B B B SR B e

The U.S. Geological Survey publishes 7. 5-minute (1:24, 000 scale) and 15—
minute (1:62,500 scale) topographic maps, which were used in this study.

Under the U.S. National Map Accuracy Standards for maps at scales smaller
than 1:20,000 (which includes both the 7. 5-minute and 15-minute maps), 90 percent
of all well-defined features, with the exception of those unavoidably displaced by

exaggerated symbolism, will be depicted within 0.50 mm (1/50 in ) of their
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geographic positions as refefred to the map projeétion (Defense Intelligence Agency,
1967). On a 7.5-minute topographic sheet, 0.50 mm (1/50 in) is equivalent to 12 m
(40 ft) on the ground. For a 15-minute map, this accuracy is equivalent to 31.7 m
(104 ft) on the ground. The preceding accuracies are minimum standards and are

greatly exceeded in most cases.

Remotely Sensed Data

Actual photographs, such as the prints and transparencies used in this study
{app. B), are subject té various sources 6f distortion or image displacement. Ob-
jects on aerial photographs may not be registered in their current horizontal posi-
tion because of optical or photographic distortiéns, tilting of the camera lens axis

at the instant of exposure, or variations in local relief (Avery, 1970).

Errors due to optical aberrations or photographic deficiencies were small
and needed no special corrective measures for the purpose of this study other than
normal care to use only the central area of the photographs. Tilting of the camera
lens axis was corrected by making the appropriate scale adjustménts along the
axis perpendicular to the tilt axis of the photograph with a K&E Kargl photo-recti-
fier while transferring shoreline data to the base maps. Because the study area
is of low relief, ithe effects of relief displacement were negligible.

Aerial photographs at scales ranging from 1:20,000 to 1:130, 000 were used

in the study (app. B). The smaller scale photographs (1:130, 000) presented some

-k S T =
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problems in the interpretation of the land/water interface, and at this scale deter-
mination of the salt marsh/water interface was somewhat arbitrary. There was
no problem in differentiating sandy beach from water, because the contrast be-

tween the two was always great.

Cartographic Procedure

Topographic Charts

Original plane-table surveys used by the Coast and Geodetic Survey to com-
pile navigation charts included shoreline data overlayed on a 1-minute grid. Posi-
tive prints of these data were converted to positive transparencies or autopositives
at scales near those of the 75— or 15~minute topographic maps, on which a 1-minute
grid had been drawn to facilitate transfer of shoreline data. The photorectifier
was then used to project the data onto the bases, while simultaneously allowing

for corrections and "fitting"" of data necessary because of minor distortions gen-

erated in the various photographic and duplication processes.

Aerial Photographs

The geometric inaccuracies of aerial photographs required some corrective
photogrammetric triangulation to determine shoreline locations where ground con-
trol was available. The lack of ground control or identifiable cultural control in
many areas (notably Mississippi Sound and the Mobile delta) precluded the use of

aerial photography in determining shorelines in these areas.
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Although the cartographic procedures used in this study may have introduced
some errors in the transfer of shoreline data from the topographic charts and aerial
photographs to the topographic map base and then to the final illustration, the major
emphasis of the procedures used was the correction or diminution of errors inherent

to the original maps and photos.

Accuracy of Measurements and
Rate-of-Change Determinations

Measurements of linear distances on maps were made to an accuracy of 0.25
mm (0. 01 in), which is equivalent to 6.0 m (20 ft) on the ground for a map at 1:24, 000
scale or 15.8 m (52 ft) for a 1:62:500—scale map. An optical comparator with a 0.5-
mm reticle was used for all shoreline changes and most rate-of-change determinations.
This type éf measurement often produces a higher order of accuracy than the original
data warrants.

The determination of rate-of-change is subject to certain limitations. The
intervals between surveys and remote-sensing coverage are erratic, rates of erosion
or accretion must be assumed to be linear between the dates of shoreline measurement,
and multiple rates can be obtained at any one shoreline segment using various combi-

nations of lines (Brown and others, 1974), or by fractionally shifting the location of

the line of measurement.
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Dewspite these limitations, the method of assessment of long-term change and
rates-of-change in the shoreline using charts, maps, and remotely sensed data rep~
resent the most practical method now available. The user of this study’s results
should realize that the limitations of the methods of measurement used require that
emphasis be placed on the general trend of shoreline change, with the measured -
change and rate of change being of secondary concern; in other words, is shore-
line erosion occurring at a low rate or a relatively high rate in a given area, or is
there apparent equilibrium in a given area?

An appreciation, by the user, of the limitations of the methods used in this

assessment will ensure that the results of this study will be both significant and

useful to the proper management and development of the resources of the coastal

area.
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THE MILIEU

Atmospheric

Located between 30° and 31° N. latitude at the northern end of the Gulf of
Mexico (fig. 1), Mobile Bay is characterized by a warm humid subtropica’l'cli—
mate, with somewhat high temperatures from April through October and mild
winter months. This type of climate mainly results from 1) the latitu‘dinal posi-
tion of Mobile Bay and its eastern location in relation to the North American land-
mass; and 2) the effects of two dominant air masses, the warm moist tropiqal air
mass originating from the gulf and the cool dry continental polar air from central
Canada. Of importance to the coast are the amounts of precipitation, seasonalki
trends, and hurricanes.

Precipitation fotals at the Mobile station average 173 centimeters (cm) or 68.1

* inches (in) per year. Monthly characteristics are illustrated in figure 2. There

is no well-defined seasonal trend such as a dry winter or summef period; however,
there is a noticeable difference in that the precipitation decreases during the fall.
Monthly or seasonal differences in precipitation affect the discharge of the Ala-
bama River into the bay and consequently affect the depositional/erosional rate
at the same time.

Hﬁrricanes have pléyed a pronounced but infrequent role in altering or shap-

ing the shoreline. Table 1 lists the dates of hurricanes that have affected Alabama
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259 ANNUAL TOTAL -1 0
173.04 CM or 68.13IN

204

1 54

10

CM. ’ ' IN.

TFigure 2. --Monthly precipitation characteristics for Mobile station, 1941-1971
(Brower, Meserve, and Quayle, 1972).
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Note that these storms all occurred in August, September,

or October, except for the July hurricane of 1916. Sixty-five percent of the hurri-

canes occurred during September. A hurricane affects Alabama's coast every 52

months, on the average.

The specific effects of these storms upon the shoreline

and bathymetfy will be discussed later, as appropriate.

Table 1.--Hurricanes that have affected Alabama*

Date

Remarks

15 August 1901

27 Sept. 1906

20 Sept. 1909
14 Sept. 1912
29 Sept. 1915

5 July 1916

18 Oct. 1916

28 Sept. 1917

20 Sept. 1926

K

Landfall, Grand Isle, La.

Very destructive - wind intensity of 150 kph (94
mph) at Fort Morgan. Landfall, Pascagoula, Miss.

Landfall, Grand Isle, La.

Landfall, Mobile, Ala.

One of the mos;c intense. Landfall, Grand Isle, La.
3.25 m (10. 8 ft) tide above mean sea level at Mobile
(2.3 m (7.5 ft) at Dauphin Island and 3.4 m (11.2 ft)
at Gulf Shores). Landfall, Gulfport, Miss.

Landfall, Pensacola, Fla.

Waves overtopped the seawall at Fort Morgan. Land-
fall, Pensacola, Fla.

One of the most destructive - 48.2 cm (19 in) of pre-
cipitation recorded at Bay Minette. Landfall, Perdido
Beach, Ala.



1 Sept. 1932

19 Sept. 1947

4 Sept. 1948

30 August 1950

24 Sept. 1956

15 Sept. 1960

3 Oct. 1964

17-18 August 1969

23

Landfall, Mobile, Ala.

Very destructive - considerable damage near the
mouth of the Dog River. Landfall, New Orleans,
La.

Landfall, Grand Isle, La.

Mainly affected the Fort Morgan-Gulf Shores area
(Hurricane Baker). Landfall, Mobile, Ala.

Hurricane "Flossy' mainly affected Dauphin Island.
Landfall, Ft. Walton Beach, Fla.

Hurricane ""Ethel" - no serious damage. Landfall,
Pascagoula, Miss.

Hurricane '"Hilda'" caused beach erosion from Point
Clear to Mullet Point and along the Fort Morgan
peninsula. Considerable damage reported at Dau-
phin Island. Landfall, Franklin, La.

Hurricane '"Camille" - very destructive storm. Tide
at Pass Christian rose to 6.8 m (22. 6 ft) above mean
sea level. Landfall, Waveland, Miss.

* Source: Report on Hurricane Survey of Alabama of Alabama Coast, U.S. Army
Corps of Engineers (USACE) 1965 and 1970; and Chermock, Boone, and Lipp,

1974.
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Hydrospheric

Mobile Bay receives the waters from the fourth largest river system in the
United States. The Mobile River system (fig. 3) drains approximately 112,966
square kilometers (km2) or 43,650 square miles (mi.2) and discharges a mean

annual 1,764.8 cubic meters per second (m3/s) or 62,316.8 cubic feet per second

(ft3/s). Another mean annual discharge of 3.55 m3/s (125.6 ft3/s) enters Mobile

Bay below the Battleship Parkway from Montlimer Creek and Fish River (Crance,
1971).

The movement of the outgoing water through the bay has been examined
(Austin, 1954) and shows that during a 6-day period in October 1952 (period of
low river discharge) the river discharge moved primarily on the western side of
the ship channel. Moreover, Austin states that 85 percent of that discharge passed
through thé Mobile Point inlet directly into the Gulf of Mexico, while the remaining
15 peréent flowed through the Mississippi Sound outlets. A more recent study (Lamb,
1972) indicates an increase in salinity in the Mississippi Sound area which would
probably change the percentages for movement of the discharge. It is probable that
the building of the bridge system from Cedar Point to Dauphin Island (plus the subse-
guent sedimentation) has diverted some fresh water from the Mississippi Sound,
thereby increasing the salinity (Lamb, 1972). However, some of the Landsat-1

imagery (for example, November 17, 1973, pass in appendix A) seems to confirm

. . N N : N
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Austin's results. Thus, it is apparent that the circulation pattern within the bay
warrants further field investigations.

Figure 4 illustrates the flow pattern of discharge througﬁ the bay. This
Skylab photograph was taken on January 21, 1974, at about 3:00 p. m. local time;

\The light tones (as opposed to the darker tones) show the suspended sediment being
carried out of the bay and illustrate the direction of flow very well. January 1974
experienced an unusually high monthly discharge with a mean of 5, 869. 6 m3/s
(207,259 ft3/s). Only three other months of January hav¢ exceeded this mean dis~
charge since 1929. The January 1974 discharge represents about a 222 percent
increase over the mean for that month (app. B).

Mobile Bay has diurnal tides that vary from 36 cm (1.2 ft) at Mobile Point
to 45 cm (1.5 ft) at the mouth of the Mobile River. An extreme high tide of 3.24m
(10. 8 ft) above mean sea level was recorded during the July 1916 hurricane and an
extreme low tide of 3.15 m (10.5 ft) below mean sea level was measured during the
1926 hurricane (Crance, 1971).

Tides, rivér discharges, the bottom configuration of the bay, and water move-
ment deflected due to the coriolis effect all contribute to the circulation patterns within
the bay. Average current velocities associated with the flood and ebb tides vary between
15 em per second during flood tide at the Mobile River entrance to 77 em per second at

Mobile Point during ebb tide (see table 2 for the velocities in different parts of the bay).
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Figure 4.--Skylab 4 photograph (SL4-63-392) taken with the S190A camera over
Mobile Bay on January 21, 1974, at 3:00 p.m. local time or 2 hours before high
tide. The light tones within and south of the bay indicate suspended sediment
discharging into the Gulf of Mexico.

Table 2.--Average tidal current velocities (diurnal) in centimeters
per second™

Location Flood tide Ebb tide
Main ship channel entrance 36 52
Mobile Bay (off Mobile Point) 72 77
Channel, 10 km (6 mi.) N. of Mobile Point | 31 26
Mobile River entrance 15 36
Tensaw River entrance 21 : 36 -

Pass aux Herons 67 ‘ 67

*From U.S. Coast and Geodetic Survey, Tidal current tables, 1969, in
Ryan and Goodell, 1972.
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According to Ryan (1969), during flood tide the incoming water that passes
through the Mobile Bay tidal pass first deflected to the east, and then northward in
a counterclockwise direction (fig. 5). However, a recent study of a hydrodynamic
and salinity model for Mobile Bay (Hill and April, 1974) indicates different results.

Taking in consideration that the wind velocity is zero, the inflow and outflow pro-

files are shown in figures 6 and 7.

OCT. 1952
FLOCD TIDE

OCT. 1952
EBB TIDE

After Austin 1954 in Ryan 1969
<

Figure 5.--Surface currents in Mobile Bay.

The ship channel ha‘s altered the natural circulatioﬁ pattern by introducing
a salt-water wedge up the entire length of the bay. Both the Tombighee and Ala-
bama Rivers discharge about the same quantity of sediment into the bay. Certain
variations exist between the two rivers during certain periods of low and high dis-
charges. Appendix B, table 4, indicates the amount of suspended sediment for a

period of 12 years.
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Satellite imagery has proven to be a very useful tool for the study of sed-
iment patterns. In July 1972, NASA launched its first Landsat-1 satellite (for-
merly ERTS-1) into a near-polar orbit. This was the first satellite dedicated
entirely to the study of the earth, and its track passes over Alabama every 18
days. The multispectral scanner (MSS) subsystem on the platform images the
earth's surface in four different bands of the electromagnetic spectrum. These

four bands are as follows:

Band 4 0.5 to 0.6 micrometers wavelength (green)

Band 5 0.6t00.7 " " (red)

Band 6 0.7t00.8 " " (near infrared)
Band 7 0.8to 1.1 " " (near infrared)

Suspended sediment transported by streams and rivers is quite visible on
Landsat imagery and can be easily traced in the sea. For example, the Landsat-1
band 5 image of November 12, 1974 (fig. 8), illustrates very nicely the sediment
plume extending approximately 20 km (12 mi.) into the Gulf of Mexico. This image
is of particular interest because the ship channel forms a boundary between-the
heavily sedimented eastern part of the bay and the less sedimented western part
of the bay. Such a pgttern is contrary to the findings of previous studies on circu-
lation patterns within the bay; however, it probably resulted from unusual conditions
because patterns on most other Landsat-1 images seem to follow the earlier findings.

Noted also on this November 12 image is a large amount of sediment off the Mississippi
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Figure 8.--Landsat-1 band 5 scene taken on November 12, 1974, over Mobile Bay.
Unusual sediment patterns appear higher on the eastern side of the bay instead of
the western part. High amounts of sediment transported by the Mississippi River
appear off the west side of Chandeleur Island. Also well outlined is the concentra-
tion of suspended sediment on the northern side of the Mississippi Sound Islands,
which supports Austin's results on the circulation pattern.
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River delta. Low tide in this case occurred approximately an hour and a half after
the image was recorded.

A December 5, 1973 (fig. 9), image shows unusual patterns not only within
and off Mobile Bay, but as far as 60 km (40 mi.) southeast of the Mississippi delta.
Again, in this case, low tide was about two and a half hours before the multispectral
scanner recorded the image.

A series of Landsat-1 band 5 images, along with tidal graphs, current veloci-
ties, and river discharge, is provided in appendix A. The seasonal trend of the
avm<.)‘unt of suspended sediment (which is actually a function of river discharge) going
out of the bay can be obsei'ved_on' the irﬁagery dated 1972 to 1974.

Throughout this 2¥yéar. tin;xev séQUence tidal stages varied widely, and it is -
very apparent that tidal cifculation dictatés the transportation pattern vof the sedi-
ment. In case of unusually «'hi'gh diséﬁarge ,; the tidal mechanism seéms to be over-
vri('ideh, as illustrated in the cése_ of the-J anuéry 20, 1974, Skylab photograph.

'From the Skylab and Lan(‘isat—:‘l_scenes, several observations concerning
suspended sediment can be ﬁadé: 1) suspended sediment is cleaﬂy visible oh the
imagery; 2) the amount of sediment is usually associated with the discharge char-
acteristics of the Alabama - Tombigbee Rivers; 3) the boundaries between sedi-
mented and less-sedimented waters can be drawn as far as 100 km (64 mi.A) out

into the Gulf of Mexico; 4) there is a definite sedimentation concentration on the
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i River

ississippi

plays large amount of suspended sediment detectable as far as 100 km (60 mi.)
delta.

Figure 9.--~Landsat-1 band 5 scene taken on December 5, 1973.
southeast of the M
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northern side of the Mississippi Sound Islands. This represents not only discharge
of sediment by other streams, but also confirms Austin's study stating that about

15 percent of the sediment from Mobile Bay flows through the Mississippi Sound
outlets; 5) general patterns in the current directions can be inferred; 6) the long-
shore westward current is detectable on most of the imagery. For sediment studies,
band 5 (red) Landsat-1 imagery is found to be the best for the detection of sediment

distribution patterns.
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BATHYMETRY

Mobile Bay is about 50 km (31 mi.) long, 13 km (8 mi.) wide in the north,
and as much as 38 km wide (24 mi.) wide in the south. It is nearly blocked from
the Gulf of Mexico at the south by the Mobile 'Point barrierland Dauphin Island. A
second outlet (and in_let) is Pass aux Herons, between Dauphin Island and Cedar
Point. The bay measures approximately 1,015 km?2 (392 mi? ) in area. ‘

Mobile Bay is a geologically young estuary. In fact, most estuaries are
young, ephemeral features, having been formed by the last eustatic rise in sea
level. Mobile Bay has probably held its present outline and shape from the time
of its fdrmation several thousand years ago; however, the bay is filling with sedi-
ment. The characteristic pattern of estuaries is to fill most rapidly near the head
(delta) and progressively fill up in the more distant reaches. This pattern can be
altered by changing rates of sediment influx from rivers and streams, relative
changes in sea level, tidal circulation, and climatic changes. Man's influence,
also, is an important factor. -Within the next thousand years, Mobile Bay will
probably become an alluvial-deltaic plain similar to the present delta.

The contemporary configuration of the bottom of the bay is essentially flat
and sloping southward. The dredging of the 12x122 m(40x400 ft) ship channel has

increased the relief down the center of the bay, and the dredging of the east-west



intracoastal waterway has had a similar effect in an east-west direction across
the widest part of the bay (fig. 10 and table 3). These changes are confined to
narrow corridors, but there are also other changes in configuration due to more
or less natural causes. These ''natural' causes may ultimately be man-induced
rather than otherwise, and they involve differential sedimentation and erosion
rates.

The bay was deeper in 1852 than in 1920 or 1973, as table 4 indicates. The
rate of filling between 1852 and 1920 was 0.49 m (1. 63 ft) per 100 years. This
rate decreased to 0.52 m (1.68 ft) per 100 years between 1920 and 1973. These
figures are for the entire bay and were obtained by taking the mean of a systematic
sample consisting of 1,720 soundings taken from National Ocean Survey charts.

It is illuminating to divide the bay into two equal parts, the northern half and
southern half, and compute the mean depths for the same three dates. Table 4 shows
the results. The filling of the upper bay is decreasing, whereas the filling of the
lower bay is increasing (fig. 11). The rate of fﬂling of the upper bay was 0.58 m
(1.91 ft) per 100 years bet\;veen 1852 and 1920, but this rate decreased to 0.30 m
(1.00 ft) per 100 years between 1920 and 1973. This decrease is significant but its
cause is unknown. The construction of dams on the Alabama River and other tribu-

taries in the Mobile River drainage basin may have trapped sediments that would



od

v
o s

i - _8:.2
BWEBARY [e35800 UI S[euusyo drys Jole-- 0T oinSL] OovesE 3TV TANNYHD HvE

T

WOl X 4E'9 3 e il
INNYHD $5Yd 0QIQ¥3d P

INNY HY AvE ANY TSI NiHANYA

SZLX WZL AVM¥T VM TV LSYOD ¥ 1NI

) ONNOS 1ddISSISSIW

|

I

.

{

:

AV LVM ¥ 1SV0D ¥3LNI ﬂ
. 1

;

. |
=) i

|

W00L X Ll TINNYHD .
3YLVE VINOAVE

A¥E IUGON

(23504 0yd) 007 X .0
TANNYHD FHOGOTHL

S X L
IINNYHD ONYTIS1SYIONITIOH

WS X T TIINNYHT aRr38
SHOJAYY

ﬁ,
|
w
|
|

\ -
§

=



39

Table 3.--Dredging in coastal Alabama

AREA DATE VOLUME
Gross cubic meters Gross cubic yards
Mobile Outer Bar  March 1975 215,813 (283,965)
June 1974 185,683 (244, 320)
July 1972 199, 482 (262,476)
Perdido Pass July 1974 303,616 (399, 495)
Sept. 1972 289,122 (380, 424)
July 1971 183,888 (241, 958)
Fort Gaines Aug. 1974 12,261 ( 16,133)
(Mobile Bay Nov. 1972 54,098 ( 71,182)
- tidal pass) Nov. 1974 34,023 ( 44,767)
Pass Heron March 1969 1,141,319 (1,501, 735)
(Pass aux
Herons)
Bon Secour July 1974 303,616 (399, 495)
(Bay) Oct. 1966 45,203 ( 59,478)
Oct. 1964 590,713 (777,254)

NOTE: All dredging jobs do not start and finish at the same point year after
year; therefore, the volumes dredged vary greatly.

Source: U.S. Army Corps of Engineers, 1975 (written communication).
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Figure 11.--Rates of filling of Mobile Bay, 1852-1973.
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have otherwise reached Mobile Bay. One can also speculate that there has been
a decrease in land under cultivation, a resulting decrease in erosion, and there-
fore a decrease in suspended sediment load carried by the rivers

The lower bay shows an incréa.se in the rate of filling from 1852 to 1973.
Between 1852 and 192_0,' it filled at the rate of 0.41 m (1.36 ft) per 100 years.
Between 1920 and 1973, this rat\e increased substantially to 0. 71 m (2. 34 ft) per
100 years. As with the upper bay, the initial causes Vof the rate change during
these periods is not known but is subject to speculation. The ihcrease in sedimen-
tation in the lower bay might be attributed to dredging of the east-west intracoastal
waterway, the widening and deepening of the ship channel*, or the relatively recent
construction of the Dauphin Island causeway** across one of the bay's two outlets.
In any evént, as table 4 shows, the lower bay was only 3.15 m (10.35 ft) (mean)
deep in 1852. |

Ryan (1969) compiled isopachs of the bay and cites sedimentation rates in

excess of 1.2 m (4 ft) per 110 years in the delta area. In Bon Secour Bay he shows

rates of 0.6 to 0.9 m (2 to 3 ft) per 110 years. His results are consistent with the

* The ship channel was constructed between 1826 and 1857 to a depth of 3 m (10 ft).
Between 1870 and 1934, the channel was deepened and widened periodically and
reached its present dimensions between 1955 and 1957 (Ryan, 1969, p. 38-39).

** Construction of the causeway was completed in the mid-1950's.
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findings of this study. Ryan (1969, p. 68) states that Bon Secour Bay appears to
have the highest natural sediment accumulation rate. The findings c;f this study
differ: the bottom north of the bay entrance, east of Dauphin Island, has the high-
est sediment accretion rate; whether this deposifion is natural or is man-induced
spoil is debatable. In any event, the highest rate of deposition is not in Bon Secqur
Bay. The distribution characteristics are discussed later, along with the SYMAP
computer maps of bathymetry. Ryan does write thét the entire bay has an average
accumulation fate of 0.5 m (1.7 ft) per century, a finding confirmed by this study.

Ryan (1969) does not report a decreasing erosion rate for the upper bay, how-
ever. He emphasizes man's role in increasing the sedir'nentbation rate in the upper
bay, and cites rates of greater than 0.9 m (3 ft) per 100 years in the afea immedi-
ately south of the delta. This may be the case in isolated areas, but this stﬁdy
finds a lower, decreasing‘ rate 0.46 (1.51 ft) per 100 years for the uﬁper bay during
the 1852-1973 period. | |

To summarize the bathymetric findings of this phase of the study, the rate of
filling of the upper bay is decreasing, while the rate of filling of the lower bay is
increasing. Overall, the bé.y is filling at the rate of 0.5 m (1. 65 ft) per century.
There is no reaéon to expect any change in this trex;d in.t}.1e near future. As a
result .of the filling, Mobile Bay will shrink in size and the delta will progrgde

southward.
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A discussion of the statistical means of bay depths provides only a general
picture. TFor details, computer plots of bathymetry were generated using the
Harvard University SYMAP program. These maps originated from soundings
tabulated from National Qcean Survey charts . A grid having a 0.8 km (0.5 mi.)
spacing was used for systematic sampling of bathymetry for the three dates 1852,
1920, and 1973. These maps, eachhaving 1, 720 sample points, were interim
steps for synthesis of a derivitive set of maps showing change betweén the dates

| 1852-1920 and 1920-1973, as well as 1852-1973. For each date and period, the
bathymetry of the bay will be discussed, the salient changes will be described, -
and the changes will be divided into depositional and erosional components.

Figure 12, enﬁtle(i "Mobile Bay Bathymetry, 1852,“ depicts a flat, rather
featureless estuary before the effects of man had become.evident. The greatest
bay depths were at the tidalk pass between Dauphin Island and Mobile Point. The
central area of the bay measured 3-6 m (10-20 ft) in depth, and the mean depth
for the entire bay measures 3.3 m (10. 7 ft).

Figure 13 shows the bay in 1920. Its character is considerably diffefent,
and the effects of dredging (spoil) are evident. Much of the west-central part of
the bay is néw only 1.5-3.0 m (5-10 ft) deep, which is only half as deep as in 1852.

The western part of Bon Secour Bay has also become considerably shallower during
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Figure 13. Mobile Bay bathymetry 1920
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this 68-year period. The tidal pass to Mobile Bay remains, however, the deepest
water. Figure 14 is a computer-derived comparison of the two bathymetric maps,
and shows filling as well as washout (erosion) of the bottom. The "difference map"
reveals filling in the main entrance (outer bar), as well as in small isolated location
east of Dauphin Island, in the center of the bay, and generally east of Mobile city.
The south-central part of Mobile Bay experienced 0.3~1.0 m (1-3 ft) of filling
during this period. Figure 15 shows only the filling (positive values) and thus sim-
plifies the patterns considerably. The areas of washout, 1852-1920, which are
represented as negative values, are illustrated in figure 16. This map reveals that
there existed few areas of washout, submarine erosion, or scouring in the bay.
Figure 17 shows the presént (1973) Mobile Bay bottom configuration. The
bathymetry is now complex, quite unlike the patterns of 1852 and earlier. The
effects of dredging show as a more or less continuous north-south trending ridge

1.5-3.0 m (5-10 ft) deep at mean low water (MLW). This ridge widens at the lati~

. tude of Cedar Point but tapers in again and deepens quickly to more than 12 m

(40 ft) at the main entrance. The upper bay immediately south of the delta is now
shallow, averaging only 1.5 m (5 ft) deep or less. Much of the bay off the city of
Mobile has been filled, and there is little bay area left deeper than 3 m (10 ft) now.

Figure 18 shows the computer analysis of differences. The greatest deposition
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Figure-14. Changes in bathymetry in Mobile Bay 1852-1920
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Figure 15. Areas of deposition in Mobile Bay 1852-1920



Figure 16. Areas of washout in Mobile Bay 1852-1920
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Figure 17. Mobile Bay bathymetry 1973
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Figure 18. Changes in bathymetry in Mobile Bay 1920-1973




53

occurred in four areas: 1) off Mobile city, 2) east of Dauphin Island, north of

the main entrance to the bay, 3) south of Dauphin Island, and 4) north of Little
Point Clear. Each of these areas is of limifed extent, but the filling is signif-
icant, on the order of 3 m (10 ft) addition to the bottom during the 53-year period.
Figure 19 shows only the areas of deposition (1920-1973), and figure 20 shows
only the areas of washout during the period. The latter map reveals thrée areas
of erosion of .1.5-3.0 m (5-10 ft) magnitude: 1) off Mobile, 2) in the tidal pass,
and 3) in the gulf bordering Mobile Point.

Three additional computer maps illustrate the overall change in bathymetry
ffom 1852 to 1973. Figure 21 shows both deposition and washout. This map is
divided into positive and negative components (figs. 22, and 23). The positive
pattern (fig. 225 is dominant, and the salient difference is the dredging along the
ship channel. This ridge of spoil is evident from the main entrance all the way
.to Mobile. Each end of this ridge is raised even more, so that about 3 m (10 ft)
of filling has occurred in these two locations. Figure 23 shows the overall nega-
tive pattern (washout) during the 121-year period. Most of the scouring has occurred
in the main entrance of Mobile Point, but other significant areas of washout are in the
upper bay off ‘Daphne (Ragged Point) and the Blakeley River bar. East(;,rn Bon Secour
Bay shows as much washout as it does deposition; in other words, little overall change

- is evident in this area.
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Figure 19. Areas of deposition in Mobile Bay 1920-1973



99

PERCENTAGE OF [31AL ABSQLUTE YALUE RANGE APPLYING TO CACH LL¥EL

3538 e nue [y

ereL .« i 2 s « s

Lireriail e
r2reries

svmnons v
reritrin v
r00sssiss e
anove
WiNPUR BELDY 1500 -10.00 -S.60 ] -
Waxieew  -l5.€0 -10i3 -b.o0 EICERES N1 oot

Figure 20. Areas of washout in Mebile Bay 1920-1973



00080 3%

02000 axxsx
axxx a00ca: axaes

3X 00D00¢00G030000 00DOTOD AXXx FAXAX
KEFX 900040006000 a00D0AA0IEED ARELL
_wixy esancnoosancaseocassca Lxaxs

,1808Baacse0 saon xias

b

xxxaaan,

=2 XXX LOKERRXEEN
ARITAIXEXNRKAR

xaxaxEnen
cor xxaxacKiiz

4 a0 XEXKXIKEXARL
TR
% coc xxataaizeraxeas
3 CCoAnxaxxeaNaE

00C A KXXCUIKXCTEXRR
(e ogtons oaca

XXXREA KOUERAAXY NXEK
XKOXE XN RRAXEY (ILEEAXTX

AXEOEAXT QKX AAR
413X AAKEARKEARAR KD L KHRRIAR

e
xxxn

*oe3canecanaseone KRRXRIIAXXOE AARXCAxXEL
9 xx ¢ 7]

aceoo

xo1 caoce rxcu aaax i

oxanoaxs xxizax
PIPPA L
RO AT

P i

XEXXXRRYAXH 200D00C DIGOCO RATNIXEKIX €3 KXX
ARZAXATAKNE 00LDEOOEODG AXAX* 33 KXAXRN XXX axxx
41X 000DICO00O ANXXEKI 1EX EXARKAXEEK nannann o

=2 podacan,

BXXEXXAE
aanaaxxns
FXARERIRRE RN

rxaRAAE 0 KKK 1

xeExioao o02€00 XHANXEK 00 EIXKKXONKKAXXUNNO KR KX £,
€ areaa COCED XAKXMJAXKHKKNXKNAKZXXHARKXRELED

o xxnax EEKUXXRHAXRK
DA« u0000C000 X 00c03ccn P
e saocas i -
BLaXTO T AR uacmmuumu.cm AXXCAXOATINKIIN 03000060 e1amuniaseaxOOXcnooEaE T e
Etren A
= re3cxanxa RRIATONGE 000 (OIGD | axarimicaasasobaia xiom -
LS008 Xaxaransxa txxiraxarxac ODIOS000TGOLOCEETEO TrXAd 1t RAXXOXRENFEY K KKIRRATXT 1X2

00
£35x SEOCGCO0A00EEC00 AXKAIIL (0D LXbagiry warkr .Ku.xxm...m.,xm:xnm-m %

R i

i b
A%r DEIBIOCCCE AIERATIIL . xEaxxaxe
it o0 oaapdeadsoat o
aeax £o0con  ouosmpatocncaoutavEeTy a1kr s oarEaniacc

Sxeaxnn
Saxnanag
rRaxou e
SERRATIChrx

ocoa

H craxnxa R3X3CATXER OCOQDGOE AXAFHIEEARX KN AXKNNIX

© aoocensoiy C et e oco:0000aa00000060700 11 Akirr 3

. 6308000 £90038003C0000002C60000€C 30D IEX 1 AEAx

. 0000CECCI00GE KX X LERRX
£ cnar s GR6GRGORE Kakarseks

soexaxzuaoneax ceosecon

AXIEEXXCH 000OCO 1AV XIKELXXKEARX
arxxxnarerax AOKPCKRRXXINEEAN

hxxKaxe
R B T L b PAXAXXTXK
BassrEonTU. 00500000 xx oacan  xxxkKK

Ciankxr ARk onmex 0uD00as 2ICE26aD0 xabd

oo e
Gz v 8oy 0€0006050CABCDD 2 Kxx
Guin o xax 0p Axxxr - 00€030GD00CD

. 00g sx

renax 00000

foowee casonc SO B0000D9L0002000L, Ko xx rnraanks 000603 <xX  XAKA KNAKN

KNxaRacRs DBOITE a0a00a
Ciniacons 0800300 1 DOOLD0SCOANEAZ0C TAXILKAE I A1 D00DOH I s
RAXXE)AXA GGBOTE Axxx (OTOIUETIOOCDIT XXIXRINX

PEACENTAGE OF IDTAL ABSOMUTC YALUE WANGE APPLYINE 1O [AZH LEVEL

Jesw 3.2y 9,99 .69 sune 5099 am2v amesr

Karzirise COGUC Xats DODOGOPUDOCOD IXXXXXENE
B L
e XX AR AR
e s0eg0nccric it
XXXA XA IRL IR €00C5 TxxaRx
1w maa coacce

Leve, L i z 3 - s . 1 a s “

i 2s12ires xaxxxe 020000000 ERIETERTE Knan
LTI ENLCIERNES 22003005, AXXRAXEXK DODO 201
FXAna AXVRXKRS AXSTRICRRK CEUCCES AEK stemoLs oy errs 655070200 B
NEAXRNARXUARRZAKKKEEARNX 00DODICO ) arsearies S (IXXIIEK 600006000
XARKAKKIXAARARRKNAXAKAX QITCOZEC ¥ reirrae XXEXEKAXK QGPOOOCIO
£ALUGAEA XN £AXXFEAR R 030003€0 xx =2 ,
S Ses0lE xan [P ——
akxaxeanzn FEH T sove
ann Wiwieon Lo -35.00 -0 ss0 oL 1.00 3.0 o1 1m0 1550
BN LR KAR R TR KoM -15.00  -i0lae -ecal -3.ob 100 itoo i01 elat 10,20 18030
5 XX
P YAXENE 600D KAKERRAXRDAEANNIN
Saxcrn EAK AKERXXOCRERK

¥ xa%ssracaeceaconn 0376000 DXAKXARY
B g gttt Do
xcrx DICOOCE XKAXAFKERGIXKX
S A R Y
AXXEARLSIRRROAY RRKXR Baxaxxia x0x

RO Ex X
AR TR RN
Axxxeaxerskaxe

SOOI O ST xxxa_ xinxs

Tyiaieiacexes 008000 1 xcaae s i rxasxx

oit cete axenia

CAXINAIKKAAIXCHTERS CO W 000 AITAKRZEEIX Lenzcan
s ©o Eoew 03

AXIRTAXRRHKEXIRR = X T

axsaian Xkx xaK

AXR2 OO0 LIAKXIXTS

00 HXxHX XA

XXXxEEAAEREXN DOTCO FXXXCIITELXZA XEXr

08000600 1%
AKATXEHTLOAXLIEIRRAL DHOCOAOOD 2%
ke 020002000 xxx

s s nouwcnn perxoonesss
ik Cugiceo
uxluxluunjxu)xxxlxxx JosEate bxrx s

xnxae

ax

axen
PrerrETe ;xunnu)unxuuxnluuuuxunnxulxuxxnu:xx)llunuxxuxuuxuxuul.xxu)
AXXEER B AAXNRRANOXX:

COXENx KKK

11X G0 00ECE u
i Rkinx D500REO06 XRARAS LXK XAARA AxxExen gxnen Rain
50000300

000
Gk 03060

axea e sress

i AR g3 P RES ARA TR
S00400000€ 0300 So0dtcopacaseuaDntcon 3 1A1aTLAALEs e s rea 1A AT 9o
T 0B DEROaEe0000 son0asna capseotaEoD0 E 03
o Fotanx 0030 EhrEar v 0000, VeI AkAS A RARRRE Y AX T IE  ARRCAXIAK 0000 KA
e s 20005 A3
< 1LY Q00uCoOnCaposu0uco00sescas buec0ngaDLop00a00s 00 TrLKELL e Y ret e R
ittt

XXX1X1 D0GD X

m.mm..mu.mmmnmu.,mm.ummumn R
231 TGNEK Ub3006 0000000000¢0864200¢ 65360000608009000 o xR
KONUUAXEIA 00DDIN0DC0A0INE00CEI00ADI0NAAPORDED DCARAAT A X AINLX; it sl S b o

x
R e e R nnnuxxxulluxllxllluxnxxuxxxn:xnxxuxxuxtnxxnnxnunxuxuxxlxllx:x“lxxuxnxnnxxxl
T

XXGAIXONLE  ATKAKKNEXRARKAXK
FAZXCIAKXA_0OGOOOA0BYO0O000UDOOBEODIUOIOODOOTUBAODD ¥ KN KN £¥ FEKNKKNXKXNKAX KR XXN X AAAKIXANA A LK KAXKAXEXKANR KNS KX KN XKNAKIXKHRRE LR AKX XN KKK XRXNRX AAXK A EXN AL
xnlxxxnuxunnu 000£0060 000600 £ 000002000000 000600000DI0NAD 4 1KXAXKA KA 3KNXXAARKXARALAKANKK AKAXEKXEAA 13 FAAKNKANAKKAK XX ARXANAX KAKIX AAKKNN AR KXNX CXXKXAX LA ARXKNNX KNEE X
Raxea e

T AT A1101. 030006000 00000096 0800400  ¢05000000 4006000 EAXTOAKAK OO XK AKX
=X @ p0C0a63caB00aB30005C 00008030 0200000009006000 o AXRL XKL X KX X OO RAOKAK LK KU O AATKA

xaunx AXXXANA €00 X XL LN AR XER K00 XA XXX R XA XL XA U ERNLCAKNRX KARX T

£xraxex 0G0€000100300005C0000000 CUAOE000000 DODEOOOOICADD | AXAANNKAKIAKENXKKARANAXRAOUKNAXIXAZAAXXRNAKKXXKEXSNDUIEC | AXNXKKRIXNKYK XRARKCKKRAXXAXAKLCKXXKKXAXK CAXED KAK KX
E3X(113701_G000IRGRIDADITCO009T0D0ABDI00000D00 HOIGIBODBO00PO0 X a0c

’ ks X0, 0800 OO XX ORI XXX XK U XRXA TN XX

161 2000000000000000000000004 00000000 0pDE00DEEDDONE000 +Aak ki X AXIXE B3 KXk KNI R AR NAKIKITKNA A AT NN CAKER 0008 KENKNAKIDKNARE KRR KANAH AN KK KR LA KRAR KAXRA ALY

2 0€0000000¢00000000000000000600000a25 DOOCH0R00BT  XXAIXEXAX ATAXKXAKAX X RN LZEAXMOANAXARAN XKXIXREXKXLX COD0 KEALXXAXX frees
X&_00003€0000800000000€00800008000A000 D0DOCABOTOD ¥ ZAXAXKK X3 KXAXKAKKXXAx XxALLKAIKAXXKAS KXXKKRKAXELIARAY _ XXKNNKX, FADAEYARXAREXCLOOUEARXAR X KATTXXILX
R T X3RN XX TOAAKEAXKRAKKXARX KARA RN AR

faxxn  ea3eeanoe 2¢0000209060300000€00 BT o E bl i b
RAEIER AL 5000300 0000000 060000160650800a0u0000 43060 xaxn3 XAXARAAR A3 RARRRCKH ERAKARA AR Ik AKNAR AR AAT IR

RAXKGATORO XXX KKAXX

XXR AKX KK EX KK XA RN XA H
ey % 030000000
CHAKR ARG xS 3K 0b00008000030080006 ‘o RENXKA KAXKS
X8 A RR T XA AAARA ARR AR LA XT3 O0pOD0006090ID00009 BXIKLEX KXAXE waxzoa xxxx =
wx Y
s AXXLIKIIXCXATAXE JE0000000000UCEO0UTNOD | XAXXXINX XX LIXAXXHIAZ XA IXXXTEAKAXEARLIXXTALANK KX XX XENRRAXHXCIAK KAX KX XXKXRARALRAD KEY ENFEX =
= X0 MAX AKX EUGAKX STAAEAAAT AKA GC000000000000C00000000 DD KAKKKS D8 XKXXX XANKN A KKAKKNARARKAKKE KNKKAREAXXA KRANNRADKXAK KA ZENAKK KXXXKARKR X KXAKHKAKRARRAS x
U HXK 90300 LKICUEOABEA AR LI T KK axaan
Ry AR REEXKN KD axx
3000008 RAXXAIKKUER KR EER X ao =
sxax tooue 0020000000: h ATXKIATAINK
X« 0020 200ag0s0: 0000 XxxAXKIX A1 Ixi XIAEOANKA 2 RO XKEX KA KIX
R A R 008D 7
] XL 1 AKX ERY R KAX XX XK TR KA XX UKL
000200 00000000 e0c0800 KX AXKNIKS XA CEA Y KKK XD IXRANKK DX XA KX B
ab0’ XEAKTIKK . 00BTI0D 00000000 00500000 KX AR AN XS AN AR ARD ARRAXNA LA AAKKARXA CKKRRIOARKE  XXNaKaX
caca0can -
o R
T4 0000900000000 ¢030, 000 KRNI AXERAXKAXEX

3a5000a00apa00000000000"
CXaXEXAXADN 0DOCAODODO0OODGEDOET

 B0000000000500000000 " saxxar U ALIAXER

KX $0000000000092090089000 N3XRTXAX RXXNXKK

i AXXAKEIAAARLEEY 000D X 2632 131 00000 600080002 OaD %, 00000006000, 009000000 ANRGAKKLIRK 1 aXKAARRXKAXK
4 = 0000 ¥aX (0 AXXAXERXN KAXXEXCIKKAXINAIXY

B oETo

Qe0a008008BG 000000 X 003 0600 AFEXMAKEAELN

. xxx 00 # a6c

V- ,%,0000000020000060 _ axKux 030 0
= Roaxx K

xakx
o XK

-
O IR XEXXRXAR
A XK 100000 FRK XX AARN

axxn
axkaxax

IEEOXEARX RN XA
-mxmuxmmmux 0c” m
Xx2XK; sooo 1x

" Sa000800800 1
xn 0000900 00

prkivy

00
3 geaacoaoannagn
X 500" gp86abG000a0a000

So30000008 0000000

XXXRRAXEXE
WA RXUNREIXRLXK

(R

Figure 21..Changes in bathymetry in Mobile Bay 1852-1973
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Figure 22. Areas of deposition in Mobile Bay 1852-1973



PLICENTASE GF TOTAL

ABKOLUTE VALUE RANGE APFLYING 10 EACH LEVEL

RN

.3 13ae 11 e.en
e L ' 2 3 > s "
sisirsea1
o
swmaocs teidisiiy
rairiey
werirries
anovr
wawprun ELON  ~)5.00  -13.00  -£,00  -3.00  -1.00 R
. MAXIWVM  15.00 <1000 --5:00  -1.00  .-1:00 -lat

Figure 23. Areas of washout in Mobile Bay 1852-1973



59

A more detailed discussion of the bathymetric changes in passes of Mobile
Bay and Mississippi Sound is provided separately in the section on shoreline changes.
These details were obtained by contouring the soundings at larger scale. The com-
puter-derived maps just described consisted of '"smoothed' and interpolated surfaces
that tended to obscure details but provided an excellent and objectively generalized
picture of the whole bay. The SYMAP original graphics were produced on a 97 by
77 cm (38 in by 30.5 in) format and subsequently reduced photographically to 33
perlcent of this size for illustration in this report. The originals are on file at the
Geological Survey of Alabama, Remote-Sensing Division.

A discussion of the bottom configuration of Mobile Bay is not complete with-
oﬁt some information on profiles. A series of six east-west profiles was plotted
from soundings from National Ocean Survey charts dated 1852, 1920, and 1973*.

The graphs were made by averaging soundings for 0.8 km (0.5 mi.) grid squares
and plotting profiles of the averages across the bay. Figure 24 shows the location
of the profiles and figures 25, 26, 27, and 28 show the profiles, présented in ordef
from horth to south.

The northernmost profile (line 5, figure 25) reveals the man-made accretion

immediately south of Mobile during the entire period 1852 to 1973. This accretion

* The hydrographic data for each chart are not renewed each time a chart is compiled,
but instead the National Ocean Survey apparently adds new soundings continually. It is
not possible, therefore, to fix the compilation date of the hydrographic data for these
charts, and these three general dates must suffice.
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Figure 25. --Mobile Bay bathymetric profiles 5 and 10,
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seems to be increasing somewhat, as the change is greatest after 1920. Line 10
(same figure) shows a continuation of the accretion west of the ship channels,
Further south, the distribution of the filling becomes more even across the bay,

- as line 30 (fig. 26) illustrates. Moreover, this part of the bay filled most during

the post-1920 period. Yet, farther south, line 40 (fig. 27) shows a continuation of

this trem:l. The filling is of greater magnitude than the previous line shows, but
this increase is in proportion to the widening and general deepening of the bay to
the south. Most of the change in the middle 6f the bay occurred before 1920, ex-
cept in the vicinity of the ship channel. The shelf fringing the edges of the bay
isﬂ sﬁréading towards the center‘bﬁt the bay bottom remains predominantly flat
in this area.

The bottom configuration further south, across the widest part of the bay,
is radically different than that to the north, as line 50 (fig. 28) reveals. ;I‘his
profile runs from Dauphin Island to Oyster Bay. TheA ship channel area, which
is plotted in the vicinity of grid intersection numbers 12-17, has filled severél
feet, according to the graph, but the resolution of the grid does not permit.plot—
ting of the 40-foot dredged channel itself. The graph depicts only the general
depths in the ship channel area for each date. Most of the fill is probably spoil

from channel di'edging. An overall filling trend is indicated immediately north
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of the Mobile Bay entrance as well as in Bon Secour:- Bay south of the intracoastal

waterway.

M) WS BN BE BN ) NS WS = .
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PROCESSES CAUSING SHORELINE AND
BATHYMETRIC CHANGES
Shoreline -and bathymetric changes are a result of complex interactions

among natural processes and, often, the activities of man. The apportionment

of the effects of each natural process on a specific historical shoreline or near-
shore:bottom,: oxr even on an existing one, is a most difficult problem requiring
extremely detailed data. This information does not exist at this time for Mobile
Bay. .Observations can be made, however, on the general effects of natural and
anthropogenetic processes as they operate within the coastal waters of Alabama.
Changes result from the normal interactions of winds, waves, tides, and currents;

severe.weather disturbances; sediment budget variations; and sea level changes.

Winds, Waves, Tides, and Currents

W1nds may cause AextIv'emevvariation in the normal tidal range in Mobil¢ and
Pei-:d-iao'Bay‘s,.and Miesissippi Sound. Waves generated by winds having a l‘ong .fetch
canlmpmge uipo;l,a Windwa>rd shore and cause mueh erosion in just a few hours. Wind-
generated l;eng”sh‘ore currents and rip currents may quickly remove and transport shere
materlals Aﬁ"om Van expesed shoreline.

In fhegeb‘as't”a'l area of Alabama, average wind directions ahdvelocities vary with
the seasons. During the fall and winter months, winds are predominantly fromv‘the north

or norfhWeet; while spring and summer winds are from the south or southwest (Cher-

mock, Boone, and Lipp, 1974. In January, 19 percent of the winds are from the north
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octant and 14 percent are from the northwest octant (fig. 29). Velocities may
range as high as 13.3-28.0 km/hr (12-20 knots). In June, 15 percent of all
winds are from the south octant and 14 percent are from the southwest octant.
Velocities may range as high as 13.3-28.0 km/hr (12-20 knots) (Institute for
Storm Research, 1974). The average annual wind direction and velocity is from
the north at 13.3 km/hr (9.5 knots) (Crance, 1971).

Persistent high winds from the north and and northwest during the winter
months tend to depress the water level in much of the bay and concurrently cause
a buildup.of waves along the south and southeast shores where wind fetch length
is great. Under these conditions, severe erosion may occur along the northern
shore of Morgan Peninsula.

During the summer months,‘ ‘and occasionally in the winter months, per-
sistent and strong south and southwesterly winds cause a decrease in water level,
especially in the lower bay. Waves and tides then build up in the upper bay, causing
severe erosion aiong the wéstern shore and lower Mobile delta, and .w’ater and waves
periodically cover the causeway across the lower Mobile delta. These \}ariations in
water level cause complex currents that complicate the nc;rmal circulation wifhiﬁ
the bay.

Somewhat the same situation exists in Perdido Bay, although the effects are

not as pronounced because of its smaller size.

- Tl .
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WIND FREQUENCY DISTRIBUTION
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Figure 29, --Wind roses for coastal Alabama, January and July,
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Severe Weather Disturbances

The coastal area of Alabama has experienced the effects of 24 trobical
étorms or hurricanes between 1901 and 1955. vSimpson and Laurence (1971)
p;redict that in an 80-km (50-mi.) segment of coastline between Biloxi, Missis-
éippi, and the mouth of Mobile Bay, the probability of landfall of a tropical storm
1s 13 percent, of a hurricane 6 percent, and of a great hurricane 1 percent for
any one year.

The aspects of such severe weather disturban_ces that cause the greatest
Cj;hanges to shorelines and near-shore bottoms are storm surges, waves, and cur-
rents (Hayes, 1967).
| Storm surge, the rapid rise in sea level partially produced by hurricane
\§rinds and failing barometric pressure, may inundate vast areas of low-lying
c;oastal areas, producihg significant and widespread erosion and deposition of
shoreline and near-shore sediments. Considering that a hurricane or tropical
storm may last for sevéral days, tremendous quantities of water can be amassed
against the coastline (Hayes, 1967). Surges in Alabama have been recorded as
_ lﬁgh as 3.60 m (11.8 ft) above MLW and as low as 2.96 m (9. 7 ft) below MLW.
When a storm surge advances up a converging estuary such as Mobile Bay or
ferdido Bas;; i’_c’si"hei’ght increases as the water becoﬁes more confined. The

storm surge pro:gfésses more rapidly on a rising tide and may result in the
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formation of a wali—like wave of water moving up the estuary (Chermock, 1975.)
Tixe;-e is a great danger of damage by hurricane storm surge along much
of the Alabam; ééaétal area because many areas along Mississippi Sounci, Dauphin
Islan;:l,. Morgan ‘Péninsula, and the gulf shoreline ére below 3.0 m (10 ft) elevation
In these‘ areas, sﬁrgé with destructive wavesv caﬂ I;Qmoye vast quantities of sedi-
mentsra>ndu ciéstroy coastal structures. Because the effects of stoﬁﬁ surge may be
attenﬁgééd bjf- .the bérrier dune complex along the gulf shorel_ine and the eastefn
end of Dauphm .I/slantvlb, the gulf beaches are the areas most subjebt to surf erosion.
Probably the rr;ost signifiéant effect of hurficanes is the erosion prodﬁced by brevak-v
ing Wz;.\}es. Lafge waves fiding the crest of a large storm surge can cause grreat
devastation especially to cliffed or dunal shorelines. Breaking waves also can
ééhé'rafe jstrdhé 10ngsh‘ore and rip currents which may remové sediments from
the shore and ixrléér-shore areas (Hayes, 1967).

; Durmg severe weather disturbances, extremely rough sea conditions pro-
hibit the use of surface ships for taking oceanographic measurements (Hayes,
19671)', and hlgh %zxrinds and rainfall make the use of current xﬁeters éxtremely
héiai;ddﬁs. So; lif‘éle is known about the currents generatéd under such conditions

other than the obvious: they must be very strong.
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Sediment Budget Variations

The sediment budget for the coastal system is the net amount of sediment
in the coastal area after considering the quantity of material being introduced,
the quantity temporarily stored (dunes) and the quantity being removed frorﬁ the
coastal system. Beaches are nourished and maintained by sand-size sediment
contributed by major streams, updrift shoreline erosion, onshore movement of
shelf sand by wave action (Brown, and others, 1974) and by current circulation.
Sand losses are cau‘sed by transportation offshore into deep wate1;, accretion
along and against natural barriers and man-made sfructures, deposition in tidal
deltas and hufricane washover fans, excavation for proposed construction, and

eolian processes (Brown, and others, 1974).

Sediment is supplied to the coastal area by the Mobile River system and by the
Perdido River system. Ryan (1969) estimates that the suspended sediment load
reaching Mobile delta and bay averages 4.3 million metric tons (4. 7 million tons)
per year and ranges from 1.9 million metric tons to 7.5 million metric tons (2.1
million tons to 8.3 million tons) per year. Of the 4.3 million metric tons per year
intfoduced, an estimated 1.3 million metric tons (1. 4 million tons) per year, or 30
percent of the total introduced, passes through the estuarine system to the gulf. No

quantitative data on bed load transported by the Mobile River system is available,
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Similar data are not now available for Perdido River flowing into Perdido
Bay (Boone, 1973).

Prevailing south and southeast winds generate waves that produce a west-
ward-flowing current along the gulf shore. A net longshore drift of 49,699 m3
(65,000 yd3) per year at Perdido Pass has been reported to enter the Alabama
coastal area. D.S. Gorsline, using wave-energy equations, calculated the net
drift at Gulf Shores at 149,853 md (196, 000 yd3) per year. This drift continues °
to the mouth of Mobile Bay, a major drift barrier, where much of the material
is carried offshore. Drift volumes within the bays have never been estimated,
but are probably small (U.S. Army Corps of Engineers, 1973).

These examples give only brief glimpses of a complex sedimentary budget.

Obviously, much work needs to be done on the variations in movement and the -

fate of sediments within the coastal system of Alabama.

Sea Level Changes

Shoreline changes caused by variations in sea level are termed eustatic.
Eustatic changes can arise through diastrophism, which is connected with changes
in the form ordepth of the ocean (Guilcher, 1954) or climatic changes, which

cause variations in the volume of the continental ice sheets.
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The National Ocean Survey has established 16 control tide stations along the
gulf coast to continuously monitor tidal height and, during a period of at least 19
years, to determine changes taking place in the relative elevations of land and sea
{Shalowitz, 1964). None of these stations is located in Alabama., Tide~gage data
gathered over the past 50 years along the Florida gulf coast show that there has
been a relative subsidence of 0.1 mm (0. 04 in) per yvear. This measurement is
obviously composed of sea-level changes as well as land-evel changes (Lazarus,
1965). However, Lazarus attributes most of this change to land subsidence and
assigns a value of 0.1 mm per year for the gulf coast from the mouth of the Mis~
sissippi River to Key West. Based upon the superimposition of this local subsid-
ence rate on the oscillations of sea level on a worldwide basis as these varied
with time. Lazarus (1965) determined that sea level rose rapidly from -112 m
(-368 ft) MSL about 18,000 years before the present (B.P.) to -3.2 m (-10 ft)

MSL about 5,800 years B.P. The rise in sea level slowed appreciably between

5,800 years B.P. and the present time, rising in an erratic manner in response to

glacial cycle until the present stand was reached (Lazarus, 1965).

Tidal gage records over the past few decades show evidence that changes in
the relative levels of land and sea are still in progress (Bird, ‘1969). On a low-
lying coast such as that bordering much of the coastal area, a continuing relative

rise in sea level will have a marked effect on the configuration of the shoreline,

-( -' - - -
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DETAILED ASSESSMENT OF SHORELINE AND

- BATHYMETRIC CHANGES

Histoﬁcal shoreline and bathyinetric change assessment shows that the
coaétél shoreliné of Alébama is being significantly modified by winds, currenfs,
all’d\-tiaé!s'.‘ Mbsf of the coastal shofeline shows either a net accretion or a nef
eroéiéﬁ. A very .feW areas exhibit a state of equilibrium in shofeline movement
over theblinéasured time interval.

Slji.néé"shorelihe erosion is of pﬁmary concern, a map of shorelines show—v
ing a net erosional trend during the period of measurement was prepared (pl. 1).
The trends shown on plate 1 represent the net changes between 1917 and 1956-74.
Short-term chahges caused by hurricanes, tropical storms, excessive winds,
abnormally high tides, although important, obviously cannot be shown on this
map. Measu_rements made by opisometer during the compilation of this map
show that of a total of 811.4 km (503.9 mi.) of shoreline, 355.7 km (220.9 mi.)
showed. a net erosional trend, and 455.7 km (283.0 mi.) showed a net acere-
tional trend, or a nef state of equilibrium as determined by the methods of this
study. Some caution is advised in the use of the figures because the limitations
of the method, as mentioned previously, do not allow for accurate. m_easuréments

of small net changes.
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Some areas are undergoing more rapid erosion or accretion and must be
analyzed and described in more detail. For this study, the shoreline has been
divided into nine regions: 1) the Mobile delta, 2) Mobile harbor, 3) the western
shore, 4) Mississippi Sound, north shore, 5) Dauphin Island, 6) the eastern shore
7) Morgan Peninsula, bay shore, 8) the gulf shore, and 9) Perdido Bay. These
regions are shown on plate 1. The areas of erosion, accretion or shoreline

stability will be emphasized, along with consideration of the possible causes.

Mobile Delta

The Mobile delta is a depositional feature that began filling the Alabama
River estuary some 3,000 years ago (Russell, 1967). This prograding delta
has filled over 64 km (40 mi.) of the original estuary. Most of the delta has
remained in a near-natural state with the exceptions of the lower terminus,
where much land filling and causeway construction (1927) has occurred, and
on Blakeley and Pinto Islands where much landfill and industrial/commercial
expansion has taken place.

In the analysis of shoreline changes, the Mobile delta was divided into two
regions, one being that part of the delta least subjectto alterations by man, desig-

nated as the Mobile delta fegion, and the other being that area most subject to the

. J M }
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constructions of man, the Mobile harbor region. Although some mingling occurs,
this division was established to facilitate the differentiation of changes in shore-
line caused by natural processes from those changes due to man's ‘activ_ities.‘

Between 1917 and 1967, the shoreline of the Mobile delta has shown a small
net erosional trend evén though a few areas exhibit a state of equilibrium. Erbéion
has occurred principally along the channel margins of disfributary rivers such as
the western bank of the Blakeley River, the eastern bank of the Apalachee River,
and along areas of both banks of the Tensaw River and Spanishv River (figs. 30 and
31). Most of the accretion has occurred within the interdistributary bays and along
the remaining banks of the distributaries. The tips of the natural levees marginal
to the distributaries show both erosion and accretion. Figure 32 shows graphically
the rates of accretion at the tip of the western natural levee of the Apalachee River.
Between 1953 and 1967, there was a distinct erosional trend in all the interdistributary
bays, which reverses the accretional trend of the past 36 years.

Between 1917 and 1967, net change of minus 8.92 ha (22.04 a.) of area oé—
curred in the Mobile delta. In an environment where increased sediment deposition
and land-building should occur, a large net addition should be expected. That such

an accretion did not occur indicates that the delta's progradation has decelerated.

~Such a situation might be partly caused by a decrease in sediment being trans-

ported downstream by the Mobile River as a result of upstream impoundments,
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or by short periods of high discharge (floods). The greatly increased velocity
of water flowing over the delta during such floods could cause much erosion in

a short period.

Mobile Harbor

The region designated Mobile harbor lies between 30°37'30' and 30°44'00"
north latitude and between 88°04'00" and 88°04'00" west longitude (pl. 1).

The most significant characteristic of the Mobile harbor area is the ex-
tensive accretion of shoreline caused by the continued spoils disposal and landfill
carried out in the development of the harbor and the adjacent industrial/commer-
cial complex. Table 5 shows the actual areas of landfill at various intervals
since 1917. Some 668.31 ha (1,650.73 a.) of land was made by the combined

efforts of spoils disposal and landfill in the area shown in figure 33.

Table 5. -~Area of landfill, Mobile harbor, 1917 to 1974, in hectares

(acres)

Period Area built up
1917-1940 86.62 ha (213.95 a.)
1940-1953 80.99 ha (200.04 a.)
1953-1967 274.95 ha (679.14 a.)
1967-1974 225.75 ha (657.60 a.)

Total  668.75ha (1,650.73 a.)
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Many other coastal areas have been filled, but not at a rate as rapid as
that in the Mobile harbor region. Crance (-1971) reported a total of 871 ha
(2,152 a.) of estuary filled above MLW in Alabama between 1953 and 1971.
The total is subdivided into variéus areas of coastal Alabama, as shown in
table 6.

Figures 33 and 34 show the areas of accretion in Mobile harbor between
various time periods from 1917 to 1974. Most of this ""made-land' occurs on
Blakeley Island, Pinto Island, McDuffie Island, and Little Sand island. Figure
35 shows the rate of construction of made land during various periods between
1917 and 1974. The highest rate concurs with the period of rapid development

in Mobile during the 1950's and 1960's.

Western Shore

The western shore of Mobile Bay begins, for the purposes of this study,
at the Brookley Aerospace Complex and continues down the entire western shore
of Mobile Bay to Cedar Point. Three major tidal creeks, Dog River, Deer River,
and Fowl River, enter the bay on the western shore. The shoreline consists of
a narrow sandy or marshy shoreline backed mostly by actively eroding seagliffs
ranging from 1.5 to 4.6 km (5 to 15 ft) high as far south as Alabama Poft. Trees

felled by the constant erosion may be seen along almost the entire shoreline.
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All >along the western shore of Mobile Bay south from Brookley Aerospace
Complex to Cedar Point there has occurred a persistent and significant erosional
trend of from less than 1.52 m (5 ft) per year in most areas to as much as 2.60m
(8.56 ft) per year and averaging 0.97 m (3. 17 ft) per year at Cedar Point ba;ed on
various intervals_of time. Table 7 shows measurements made of the shoreline
changes at points identifiable on U.S. Geological Survey 7.5-minute topographic
sheets. As this table shows, erosion at measured points has ranged from 12 m
(39 ft) at Pt. Judith to 149 m (488 ft) at Cedar Point during 1917-1974. The areas
between Dog River Point and Fowl River Point and between Delchamps Bayou and
Cedar Point show the most severe amounts of erosion (pl. 1).

Figure 36 shows the shoreline changes between Dog River Bridge and Fowl

River Point during various time periods between 1917 and 1967. The persistent

‘and severe erosion shown in this area is broken only by accretion caused by spoils

disposal in an area north of the Hollingers Island Channel (proposed Theodore Ship
Channel). Erosion in the area is threatening waterfront residents throughout the
area.

The severe erosion along the shore between Alabama Port and Cedar Point
has already partly destroyed a railroad right-of-way to the east of Highway .163. '

Erosion is now threatening the highway itself at some points. The Cedar Point
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Table 7. --Shoreline changes measured at selectéd identifiable points along the

10.

11.

12,

western shore of Mobile Bay,

Location

Dog River Point (at bench
mark)

Mobile Yacht Club (at pier)
Deer River Point (at new
pier)

Bellefontaine (at name on
map)

Sunny Cove (at name)

Fowl River Point (at bench
mark)

Mon Louis (at name)
Faustinas (at name)

Pt. Judith (at name)

Alabama Port (at name)

Cedar Point (at30°20'00"'N,

latitude

Cedar Point (at Hwy 163
symbol)

Change* Time period Average annual change
-83. 8m 1917-1967 1.68m
(-275 ft) (5.51 ft)
~120.1m 1917-1967 2.40m
(-394 ft) (7. 87 ft)
~47,9m 1917-1967 0.96m
(-157 ft) (8. 15 ft)
~36.0m  1917-1958 0, 88m
(-118 ft) (2, 88 ft)
~52.7m 1917-1958 1. 29m
(~173 ft) (4.23 ft)
~43.3m 1917-1958 1.05m
(-142 ft) (3.46 ft)
~24,1m 1917-1958 0.59m
(- 79 ft) (1.93 ft)
~29.9m 1917-1958 0.73m
(~ 98 ft) (2.40 ft)
-11,9m  1917-1974 0.20m
(~ 39 ft) (0. 68 ft)
-43,3m 1917-1974 0.76m
(-142 ft) (2.49 ft)
-107.9m 1917-1974 1.90m
(~354 ft) (6,22 ft)
-148.7m 1917-1974 2.61lm
(-488 ft) (8.56 ft)

*Positive changes show accretion; negative changes show erosion,



89

DOG RIVER BRIDGE TO : DEER RIVER TO FOWL RIVER
DEER RIVER, 1917 TO 1967 ' POINT, 1917 TO 1956, 1967

Sunny Cove

Hollingers Island N~ Shoreline 1917
= Ship Chaonnel

Shoreline 1940

N

2000 Feet
_ .
|

Figure 36. --Shoreline changes between Dog River Bridge and Fowl
River Point between 1917 and 1967,
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area is very important to the continued protection of the salt marshes of southern

- Hollingers Island in Mississippi Sound from the full effects of winds, waves, and

currents from Mobile Bay. The southern tip of Cedar Point has persistently shown

one of the highest rates of erosion recorded for the coastal area. Between 1917
and 1974, 149 m (488 ft) of erosion has been measured (table 7). The change in

rate of erosion for various time periods is shown in figure 37.

Mississippi Sound, North Shore

The northern shoreline of Mississippi Sound is mostly made up of low-lying
salt marsh with numerous tidal creeks, the principal ones being West Fowl River,
Bayou-Coden, and Bayou La Batre. The shoreline of Mississippi Sound, including
the barrier islands to the south, totals 201 km (125 mi.), excluding the length of
tidal streams, of which 162 km (101 mi.) consist of tidal marsh (Crance, 1971).
Most of the region's 4, 762 ha (11,762 a.) (Crance, 1971) of tidal marsh is found
around Grand Bay, Fowl River Bay, Heron Bay, and on the numerous small is-
lands in the Scund. With the exception of residential and commercial fisher-ies‘

development in the principal tidal creeks, most of the northern shoreline remains

in a natural state.

The southern shoreline of Mississippi Sound is comprised of sandy barrier
islands that protect the northern marshy coast from the full impact of erosional

agents. These islands will be discussed more fully in a later section.
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Between 1917 and 1958, most of the northern shoreline of Mississippi Sound
experienced net shoreline erosion. The amount of erosion measured at selected
points identifiable on U.S. Geological Survey 7.5-minute topographic maps of the
area varied between 47.85 m (157 ft) on Marsh Island (Grand Bay) and 132.28 m
(434 ft) on Marsh Island (Portersville Bay) as shown on table 8. These represent
erosional trends ranging from 1.17 m (3.84 ft) per year to 3.77 m (10. 56 ft) per
year for those specific points. The changes in the rate of erosion for selected
points over various time periods are shown in figure 38.

The generalized areas of erosion in Mississippi Sound are shown on plate 1.
Most of the erosion of Mississippi Sound has occurred on exposed marshy head-
lands’and. on exposed shorelines at the numerous islands. Cat Island lost an average
of 59.89 m (196.5 ft) of it_s southern shore, and Isle aux Herbes lost an average of
~99.06 m (325. 0 ft) of its southwestern shore between 1917 and 1958 (table 9).

It is estimated that many exposed shorelines of Mississippi Sound are eroding
at an average rate of 1 to 2 m.(3.28 to 6.56 ft) per year, on the basis of measure-

ments made at selected points and average rates measured.

Dauphin Island Area

Dauphin Island is part of a chain of barrier islands protecting Mississippi Sound

from erosional forces from the Gulf of Mexico. These islands absorb almost the full
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Table 8.--Shoreline changes measured at selected identifiable points along the northern

shore of Mississippi Sound

- Location

1. Barron Point

[\

. Cat Island (southeast shore)

8. Marsh Island (southeast shore)
(Portersville Bay)

4. Isle aux Herbes (eastern shore)

5. Isle aux Dames (88°18'00" W,
longitude

6. Point aux Pins (at range line)

7. Marsh Island (mid-island)
(Grand Bay)

8. Grand Batture Islands (South

Rigolets Island, 1,000 m east
of state line)

_ Change

*

-96.0 m
(-315 ft)

~-101 m
(-331 ft)

-132 m
(-434 ft)

-71.9 m
(-236 ft)

-81.1m
(-276 ft)

-71.9m
(-236 ft)

-47.9 m
(-157 ft)

-120 m
(-393 ft)

Time period

1917-1955

1917-1958

1917-1958

1917-1958

1917-1958

1917-1958

1917-1958

1917-1958

* i . . .
Positive changes show accretion; negative changes show erosion.

Average annual

erosion

2.34m
(7. 68 t)

2.46 m
(8.07 ft)

3.77m
(10.56 ft)

1.76 m
(5.76 ft)

2.05m
(6. 72 ft)

1.75 m
(5.76 ft)

1.17 m
(3.84 ft)

2.93 m
(9. 60 ft)
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impact of winds, wave action, tides, and currents; and their configuration is
conStantly changing.

Dauphin Island is 24.35 km (15. 13. mi.) long and varies from 305-549 m
(1,000-1,800 ft) wide across the western sandy spit to 2. 6 km (1. 6 mi.) wide
across the forested main body of the island near the eastern end. Elevations at
the east end of the island are generally between 1.5 and 3 m (5 and 10 ft), except-
ing a large east-west trending dune system as much as 14 m (45 ft) above mean
sea level. Most of the population of Dauphin Island is concentrated in the éastern
11 km (7 mi.) of the island, either along the bay margins of the main body of the
island or along the first 5 or 6 km (3 or 4 mi.) of the spit, where much new resi-
dential development has occurred.

The shorelines of Dauphin Island have been greatly modified throughout its
known history. Shortly after 1717, a Frenchman, ST Du Sault, produced a map of
the island that indicated strongly that at ‘?hat date, Dauphin Island and Petit Bois
Isiand, presently immediately west of Dauphin Island, were connected. At some
later date the island was breached. This conclusion was reached because the
"Isle Dauphine’ ‘shown on the circa 1717 map has a hump on the western spit very

similar to the hump of the present day Petit Bois Island. Also, the next island to

the west oﬁ the cireca 1717 map was called "Isle & Corne'", Horn Island, which is the

island to the west of the present day Petit Bois Island.
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Between 1909 and 1917 a hurricane breached Dauphin Island, dividing it into
two smaller islands separated by 8.5 km (5.3 mi.) of open water, shoals, and
scattered remnants of the former island. The western island was 6.1 km (3.8 mi.)
long and the eastern iéland was 6.7 km (4.2 mi.) long (fig. 39).

Between 1917 and 1942, the hurricane-created tidal inlet filled with sediment,
thus rejoining the two islands to form one island. Air photos taken on March 23,
1950, show Dauphin Island again breached by the hurricane of September 4', 1948.
Tides generated by this hurricane were reported to be 1.8 m (6 ft) above normal
at Coden and Bayou La Batre (U.S. Army Corps of Engineers, 1973). The island
was breached about 1,219 m (4, 000 ft) west of Oro Point. The breached area was
approximately 427 m (1,400 ft) wide and, by the date of the photos, was probably
covered only at high tide. A washover fan extended over much of tﬁe length of the
island but was best developed for a distance of 3.2 km (2 mi.) west of Bayou Hexon
channel .

Extensive residential development has occurred in this area since 1950 (fig. 40).
Because this area has been breached twice by hurricanes in this century, there is
every reason to believe that it will again be breached, at great cost to private prop-

erty in the area. Paradoxically, most of the new residential development has
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UNOCCUPIED
DWELLING UNITS

Figure 40. --Increase in occupance of a part of Dauphin Island between 1950 and 1975.
Dwelling units mapped by field survey in 1975. U.S.D.A. photos dated 1950 (left),
1960 (right). Scale 1:20,000.
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occurred in areas most susceptible to storm damage, while large tracts of -sub-
divided lﬁnd in the eastern part of the island protected by the large primary.--
dunal complex and a forest of pines are relatively undeveloped.

The barrier dune complex slowly migrated north as much as 156 m (513 ft)
between 1917 and 1942, forming a precipitation ridge where it is slowed or halted
by the forest edge (fig. 39). No measurable movement was detected between 1942
and 1958 (fig. 41). Movements shown on figure 41 are attributed to differences in
mapping techniques.

Figure 41 shows a general trend of erosion along the gulf shore of the island
and general elongation along the western end of the island. Figure 42 shows the rate
of erosion for various time periods at locations along the gulf shore of the island.
Shoreline erosion on the part of the island that was westernmost in 1917 (fig. 43)
averaged 176.0 m (577.5 ft) over the period 1917 to 1974 or 3.09 m (10. 13 ft) per
year. The maximum measured erosion was 201.2 m (660 ft), an average of 3.53
m (11,58 ft) per year for the period 1917 to 1974, Shoreline erosion on the entire
gulf shore for the period 1942 to 1974 averaged 63. 70 m (209 ft) or 1.93 m (6. 34 ft)
per year excluding the accretion on the western tip of the island. This accretion has

added a total of 2.9 km (1.8 mi.) to the length of Dauphin Island from 1917 to 1974.
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The accretion measured at the western tip of the island for various intervals of
time is shown in table 10. Because of the different orientations of the longest
axis of change, the amounts for the various time periods do not equal the total

for the period of measurement.

Table 10.--Amount of accretion at the western tip of Dauphin Island, 1917-
1974.

1917-1942 1,270 m (4, 166 ft)
1942-1958 635 m (2,083 ft)
1958-1974 1,429 m (4, 687 ft)
1917-1974 2,730 m (8,957 ft)

The bathymetry of the Mobile Bay entrance and the passes associated with
Little Dauphin Island is heavily influenced by dredging and associated spoil accu-
mulation. The Mobile Ship Channel and Pass aux Herons (Pass Heron) are both
dredged regularly, and the spoil from this is added to the sedimentalogical regime
of the bay entrance. The areas adjacent to the main entrance are filling, and the
relief of the gulf bottom is becoming flatter (figs. 44, 45, 46, and 47). Passes
that are not regularly dredged are closing or have closed, such as Big Pass Mar-

garet, Little Pass Margaret, Bayou Matagua, and Pass Drury (Gazzier, 1972).
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Pass Drury has been replaced by an artificial channel between Little Dauphin
and Dauphin Island, parallel to the long axis of Little Dauphin (fig. 47). Sev-
eral areas of drifting sandbanks have formed near Peavy Island and in Dauphin
Island Bay (Gazzier, 1972, p. 38).

The bathymetric contours for 1929 (fig. 44) show a depression with depths
of more than 6 m (20 ft) south of the east end of Dauphin Island. By 1973, this
depression accumulated an average of 1.22 m (4 ft) of sediment in its deepest
part between 1929 and 1973 (fig. 47).

Southwest of the Mobile Bay entrance is Sand/Pelican Island, an emergent
bar of an ebb-tidal delta. The bar is in a dynamic state and its shape, size, and
location have changed continuously throughout historic times. It is especially
affected by severe weather disturbance. The bar increased steadily from 1929
to 1973 and the present island is approximately 2. 74 km (1. 70 mi.) long and sup-
ports vegetation on the southeast end (fig. 48).

East of Sand/Pelican Island adjacent to the Mobile Ship Channel is a small,
intermittently subaerial bar called Sand Island on the Fort Morgan 7%-mingte
quadrangle map of 1958. This is probably a channel-margin bar (Hayes and

others, 1973).
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Figure 48.--Sand/Pelican Island, 1975.

Concurrent with the accretionary trend of the western tip of Dauphin Island |
there has been a pronounced change in the configuration of Petit Bois Pass, which
separates Dauphin Island and Petit Bois Island. As previously mentioned, circa
1717, the pass probably was not in existence. The earliest coastal survey avail-
ablé, the survey of 1848, shows the pass to be well developed. The w1dth of Petit
Bois Pass has varied from 2.61 km (1.62 mi.) in 1848 to 7.51 km (4.66 mi.) in

1974 (table 11). During this same interval the pass migrated 12.40 km (7.71mi.)
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Table 11.--Width and westward migration of Petit Bois Pass at various time
periods between 1848 and 1974

Year Width Westward migration™

1848 2.61 km (1.62 mi.)

1917 6.52 km (4.05 mi.) 8.57 km (5.32 mi.) 1848-1917
1942 7.65 km (4. 75 mi.) 2.61km (1.62 mi.) 1917-1942
1958 8.48 km (5.27 mi.) 1.31 km (0.81 mi.) 1942-1958
1974 7.51 km (4.66.mi.) Imperceptible 1958-1974

Total 12.40 km (7.71 mi.) 1848-1974

*Westward migration was measured by calculating the westward movement of
the eastern tip of Petit Bois Island.

westward. Figures 49 and 50 illustrate the changes in the configuration of Petit
Bois Pass between 1848 and 1974. The widening of the pass and its westward
migration are clearly shown. However, not only has the pass been meodified in
width and location, but also changes in the configuration of the bottom have oc-

curred.

Between 1917 and 1933, very little apparent change in the bottom config-
uration of the pass occurred. This lack of change may have been due to slight
stabilization of coastal erosion and accretion during this period, or may merely

reflect use of older sounding data on the 1933 edition of the charts (fig. 51).



| ' ' h 4 i
. i' I ' ' '

usam}eq 858d STog 1199d JO UOTBINSIIU0O 9yj ul sefuryd-- gy oanSid

151,88

‘g¥6T bur 8381
157088

10Z 488

Zr6l dul|sioyg AN

Ellli

112

wino)

Mm:acz'

_ g 1113d
ssvd sI0
L) KHH“VU
: 43
23
>
HE
P
/ 152088
S 1588 0788 r6l-£161 SSvYd SI09 L113d
1S 1o88 0288 \ST88
£161 2utPods _
8pgL Ul p2uo puoy

L ut paio puoq

FAY

aNvAIst
)

aNvs|

151088

~ 15Co88

£161-8v81 SSVd $10€ L1L13d

/% 02488




113

151088

‘PL6T PUB ZH6T

usamiaq ssed S10d 31139J JO UOIIBINZIJuoD 913 Ul sa3uBy)D-- °(0g 2InJLf
02088 ‘

yL6l 2Ul]dioys \/

3w

152,88

!

Aunoy

M.o_ HoW —

0

t
8661 u! paip puon

1it3d

/

N
csvd sio8
2[5
24
B
V\,.%
/2
/ 1STo88
51488 Slogp 02,88 r/61-8561 SSvd S109 1113d
+0C,88 ) 1STo88
8561 duljeioys TN
NV.Q— C_ Daib TCDI_
d
siog 1113
vd
sS 014)

10088

1S 1488

1SToB8

/
8561-2r61 SSVd $108 1113d

M N S B S aE o G AN N Ak S O B SN A o B e



Sl T BN R S Sh SN g o B EE B A R E Sn R = e
b —— k s ! :

“(€86T pue LT6T
‘2921 S1IBYD §HDSN WOI] r18p) mmma pue LI6T ‘SSed stod 11lad ‘sSanojuod ormjewrAyged TG 2an3rd

ge6l * Ssvd Siog LiL3d .osz

&E Mom msr T Q/
/\ |

, woodo | ?|03g
annos 1dISSISSIW | soiein ol upsw wnita

ol” : 1994 G |DAIBIUIL mnojuony
+5Lo0E

114

f—

’SSvd $109 Li113d

@m siog 11134
N oy

e

s40q 0 S40]4 |DPI4 |DII2OqNG

I1ddISSISSIW veio pusn

\ 102088 SZo88




- B An I BN NN W G EE N W B0 B BE GE A Gn N S

115

The bathymetric map for 1961 shows several significant changes in the
islands' shorelines; the western tip of Dauphin Island prograded westward and the
easternmost spit of Petit Bois Island apparently was eroded to such an extent
that it was covered by the highest tides (fig. 52). The change in the configura-
tion of the islands, however, did not affect the bottom. configuration greatly. The
tidal scour channel just west of Dauphin Island (at about longitude 88°19'), as de-
lineated by a 20-foct contour line, became narrower and more elongate, but the

basic configuration of the bottom changed little.

By 1973, however, the eastern spit of Petit Bois Island had been eroded
to below MLW, ‘producing a wider outlet for the waters from Portersville Bay.
This has reduced current velocities through the scour channel, and different
patterns of sedimentation and erosion have been produced. The eastern end of
Petit Bois Island has become a series of sand shoals in the pass, and an ebb-
tidal bar (delineated by the closed 10-ft contour line from longitude 88°19' to
88°20') is beginning to form at the seaward end of the scour channel (fig. 52).

If Petit Bois Pass is considered only as the area of open water between
the western end of Dauphin Island and the eastern tip of Petit Bois Island, then
the pass migrated westwé,rd along with the islands during the period from 1917
to 1973. However, it is significant that the scour channel, the deepest part of

the pass, remained stationary during this period; even after 1961, when the
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western tip of Dauphin Island had prograded across the northern end of the chan-
nel, and should have deflected ebb-tidal currents and somewhat reduced their
velocity, the channel remained in the same place and maintained its general
depth.

Only recently, since erosion of the eastern end of Petit Bois Island widened
the pass significantly, has the scour channelli become shallower and less well de-
fined. This suggests that Petit Bois Pass channel has been "'pinned" in place by

some geologic factor or factors; possibly by the pre-Pleistocene channel of the

Escatawpa River (P.A. Boone, personal communication, 1975).

Eastern Shore

The eastern shore of Mobile Bay extends from D'Olive Bay about 2.0 km
(1.24 mi.) south of Spanish Forf (Bridgehead) southward some 48 km (30 mi. ).
to the mouth of Bon Secour River. The shore from D'Olive Bay to Magnolia
Beach south of Fairhope is -generally a sandy beach backed by a sea cliff 3 to
33.5 m (10 to 110 ft) high‘.v South of Magnolia Beach, the shore consists of low-
lying wetlands varying from less than 0.5 km (0.31 mi.) to more than 1.5 km
(0.93 mi.).wide. |

Most of the eastern shore has undergone accretion or has maintained a

state of dynamic equilibrium between 1917 and 1967 or 1974.
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The major shorelines of net accretion between 1917 and 1967 are the shore
from Village Point south to Red Bluff, the shore south from Great Point Clear
for 5.1 km (3.2 mi.), and the shore from Dorgans Landing at the mouth of Weeks
Bay south to the mouth of Skunk Bayou just north of Weeks Bay.

Erosion along the eastern shore occurs intermittently and is of less mag-
nitude than in most other areas studied. However, some shorelines showing
erosion are in highly desirable residential areas and thus could require expen-
sive erosion-control construction. Erosion has occurred sporadically along the
shore from Loyola Villa to Great Point Clear between 1917 and 1956-1967. .Net ‘
erosion of a shore just south of Loyola Villa was 60 m (197 ft) between 1917-1956
or 1.5 m (5.0 ft) per year.

Other minor areas of erosion are Red Bluff, Seacliff, the area between
Darling Landing and Mullet Point and several areas south of Mullet Point. Shore-
line changes at various points identifiable on U.S. Geological Survey 7. 5-minute
topographic maps are shown in table 12. Variations in the rate of shoreline
change are shown for Village Point and an area south of Magnolia Beach in figure

53.
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Table 12.~~Shoreline changes measured at selected identifiable points along the
eastern shore of Mobile Bay

*

Location Change Time period Annual rate
Village Point 4108 m 1917-1967 2.16 m
(+354 ft) (7. 08 ft)
Red Bluff -36.6 m 1917-1967 0.73m
(-120 ft) (2. 4 ft)
Seacliff -12m 1917-1967 0.24 m
(-78 ft) (0. 78 ft)
Fairhope municipal +60 m 1917-1967 1.2m
wharf (+197 ft) (3.9 ft)
Loyola Villa -60 m 1917-1956 1.5 m
' (-197 ft) (5.0 ft)
Great Point Clear +36 m 0.92 m
(+118 ft) (3.0 ft)
Point Clear +54 m 1.4 m
(+177 ft) (4.5 ft)
Near Mullet Point -47.9 m 1.2 m
Park 30°25' N. lati-  (-157 ft) (4.0 ft)
tude

Positive changes show accretion; negative changes show erosion.
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Morgan Peninsula, Bay Shore

Morgan Peninsula is a large baymouth bar extending westward from the
eastern shore of Mobile Bay. This peninsula, which varies from 0.28 km (0. 46
mi.) to 3.59 km (2.23 mi.) wide and is 29.0 km (18.0 mi.) in length, separates
the bay Watér from the gulf water, and insures the maintenance of an estuarine
environment in Mobile Bay, and care should be exercised to insure its continued

effectiveness as a protective barrier. Erosion, measurable along much of the

northern shore and probably existing along aimost the entire length of the shore

from the mouth of Bon Secour River to Fort Morgan, is a major concern for resi-
dents of the shore from Seymour Bluff to Catlins Bayou. Measurements of the
change in shoreline configuration between 1917 and 1974 show that as much as

52 m (170 ft) of erosion may have occurred from the mouth of Bon Secour River
to Catlins Bayou during that time.

Although no measureable erosion was discerned between Catlins Bayou and
Three Rivers during 1917-1942, shoreline erosion did occur between 1974 in the
Edith Hammock area. Some areas showed as much as 30.5 m (100 ft) of erosion -
between 1942 and 1974, although the average amount was closer to 15.3 m (50 ft).

From Three Rivers to the eastern seawall of Fort Morgan, much erosion and
shoreline modification has occurred. From Little Point Clear to St. Andrews Bay,

termini of bayward-projecting ancient spits lost from 61 to 244 m (200 to 800 ft)
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between 1917 and 1974. From Navy Cove to the eastern seawall of Fort Morgan,
losses on the order of 61 m (200 ft) were noted.

Examination of bathymetric data from 1929 to 1973 (figs. 44, 45; 46, and
47) reveals that St. Andrews Bay, Navy Cove, and the bay north of Fort Morgan
are becoming progressively shallower. The southwest cove of St. Andrews Bay
has also become a shoal area. This trend probably 'reflects deposition of material
eroded from the shoreline west of Little Point Clear, as well as material from the
spoil banks on the south side of the Intracoastal Waterway north of Morgan Penin-
sula, and from the spoil banks northwest of the peninsula along the Mobile Ship
Channel.

A long underwater spit, known locally as Dixie Bar, extends about 5.6 km
(3.4 mi.) south into the gulf from Mobile Point. Between 1929 and 1973, this spit
became somewhat more narrow and elongate, and the southern tip appears to have
moved slightly west (figs. 44 and 47). This trend indicates little or no deposition
on the spit, either because the longshore currents are strong enough to erode it,
or that very little material is being eroded from the gulf shore of the peninsula to

the east (fig. 47).
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Gulf Shore

The Gulf shore region of coastal Alabama extends from Mobile Point to the
Florida state line and is some 50 km (31 mi.) in length. The shoreline of white
sandy beaches is backed by low dunes.

In 1917, several tidal inlets existed. These inlets opened into Little Lagoon
and Shelby Lakes. The inlet connecting Little Lagoon to the Gulf was 1.1 km (0.7
mi.) west of Gulf Shores beach. This inlet was approximately 80 km (262 ft) wide.
A second inlet along the gulf shoreline was approximately 1.7 km (1.1 mi.) west of
Romar Beach, as located on the Foley, Alabama, 15-minute U.S. Geological Survey
topographic map. This inlet connected the easternmost lagoon onthe Shelby Lakes
with the gulf, and was approximately 20 km (66 ft) wide. By 1941, both of these inlets
had closed and a second inlet to Little Lagoon had opened. This inlet, 3.5 km (2.2mi.)
west of the inlet of 1917, was about 60 m (197 ft) wide. High-altitude infrared photog-
raphy taken in 1974 of this area showed no passes open into either Little Lagoon or
Shelby Lakes, although some water possibly flows through the western inlet of Little
Lagoon at the highest high tide.

Between 1917 and 1974, the gulf shore eroded by an average of -23.8 km (-781t)
between Fort Morgan and Alabama Poinf. This ;et erosion along the gulf shore oc-

curred in the areas indicated on plate 1. Measurements of shoreline changes at
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various locations identified on the Weeks Bay, Alabama, and the Foley, Alabama,

15-minute U.S. Geological Survey topographic maps are shown in table 13.

Table 13.--Shoreline changes measured at identifiable points along gulf shore
of Alabama

Location Change Time period Annual rate
Mobile Point +344 m (+1129 ft) 1917-1974 6.04 m (19.8 ft)
Gulf Highlands 31 m (102 ft) | 0.5 m (1.8 ft)
Gulf Shores indiscernible
Romar Beach -47 m (-154 ft) 0.8 m (2.7 ft)

Perdido Bay

Perdido Bay is an estuary lying north of a bay-barrier complex that trends
normal to the gulf shore at the Florida-Alabama state boundary. The shores of
Perdido Bay are well drained because elevations rise abruptly to 9 to 21 m (30 to
70 ft) on the west-central side of the bay and 1.5 to 4.6 m (5 to 15 ft) along the
remaining shore (Parker, 1968).

Perdido Bay itself has shown little measurable change along the Alabama
shoreline, according to presently available information. Areas of small amounts

of erosion probably do exist within Perdido Bay but are too small to be discerned
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by methods used in this study. Significant changes in the configuration of Perdido
Bay have occurred in the area of Perdido Pass. |

Changes in the configuration of Perdido Pass are among the most extensive
recorded in this study. Shorelines at various intervals between 1867 and 1974 are
shown in figures 54 and 55. In 1867 the Perdido River channel (presently called
Old River) flowed around the east end of Ono peninsula (now Ono Island) then west-
ward to enter the gulf (fig. 54). By 1390-1892, this river channel had been partly
abandoned and the major flow from Perdido Bay entered the gulf through a channel
in Ono peninsula excavated by local residents between 1867 and 1892 (U.S. Army
Corps of Engineers, 1973). By 1918, water exchange occurred through two inlets
separated by an island (fig. 54). This configuration possil;ly was caused by the
hurricane of September 8, 1917. Gradually the accretion resulting from the west-
ward littoral drift closed these two inlets to form a single inlet by 1941 (fig. 55).
Between 1941 and 1974, the persistent littoral drift had caused the pass to migrate
westward until arres;ced by the construction of a seawall in the 1960's. Ryan (1969)
mentions that the pass in its natural state was some 1.8 m (6 ft) deep and presented
great hazard to navigation. Safe navigation has been assured since the construction

of several seawalls, which stabilize the inlet and protect a bridge over the inlet.
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‘The migration of the present inlet in the future is unlikely; however, past evidence
suggests that a severe disturbance, such as a direct blow from a hurricane with its

high tides and high current velocities, could again create one or more passes similar

to those shown for 1918 (fig. 54).
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LAND/WATER INTERFACE ANALYSIS

Measurement of Alabama Shoreline Length

Three different 'shoreline length measurements are currently used for the
State of Alabama. Appendix E of the National Shoreline Study prepared by the U, 8.
Army Corps of Enginéers lists the estuary shoreline length as 491.2 km (305.3 mi.),
while the Alabama Department of Conservation states that the correct length is 577.5
km (358.9 mi.). N.O.A.A. has published a value of 976.7 km (607 mi.) for the length
of tidal shoreline in Alabama. The Geological Survey of Alabama measured the shore-
line and obtained a figure of 811.3 km (504.2 mi.), using an opisometer on large-
scale maps. These measurements are based on traditional map analysis techniques
and the difference between them manifests the difficulty encountered in such measure-
ments, including the definition of the parameter being measured. Problems arise
With subjective interpretation and the physical limitations of opisometry (map-wheel
operation).

The earth imagery acquired by the two NASA satellites, Landsat I and II, is
a new source of information applicable to the problem in a format highly appropriate
for automatic processing with digital computers. With data being collected periodi-
cally, repetitive énalysis is feasible on at least an annual basis. This is particularly
important in areas of dynamic geomorphology such as the upper reaches of Mobile

Bay and the barrier islands. In addition, imagery may normally be obtained a short
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time after the occurrence of hurricanes, which cause rapid and substantial changes

to oceur in coastal areas.

Automatic processing of satellite imagery makes possible a rapid analysis of
the large volume of data representing an area such as the coastal region of Alabama
while simultaneously reducing the influence of human error on the analysis. Measure-
ments based on the satellite data are not as subject to interpretation errors because
they are based principally on objective analyses of quantitative data, as opposed to
the subjective analysis of qualitative data representativé of traditional techniques.

The repetitive analysis provides the opportunity to readily identify any inconsistencies
that might appear so that they can be resolved in a timely manner, while at the same
time facilitating change detection.

Because of the experimental nature of the automatic shoreline detection and
measurement technique and the pilot aspect of this application, the resources dedicated
to the Alabam‘a, shoreline measurement project were necessarily restricted. To
analyze the entire Alabama shoreline would require, given the available data, the pro-
cessing of three computer-compatible tapes through the entire shoreline measurement
system (which is outlined in appendix C). To improve confidence in the measurements,

it was decided to analyze imagery from two dates covering the Alabama coastal area

from the Mississippi state line east to longitude 87°42', near Foley. This excludes the

1
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Perdido Bay area and requires only two computer-compatible tapes for each date.
The shoreline segment east of Foley is being analyzed as a follow-on project. The
inland boundary of the measured area was determined by estimating the extent of
tidal influence. Measurement of simple features in the Landsat images have agreed
to within 8 percent of measurements of the same features on standard maps made
with an opisometer.

Data from December 28, 1972, and from December 5, 1973, were analyzed
(figs. 56 and 57). Winter dates were chosen to minimize the effects of vegetation,
which might obscure true shoreline or be floating in the marsh areas. Aerial photog-

raphy acquired in February, 1973, (NASA Earth Resources Aircraft Project Flight No.

'73-023) was compared with the computer land/water category classification. There

was some difficulty in detecting the narrow water courses in the marsh areas north

and west of Mobile Bay, which demonstrates an effect of sensor resolution on the por-
trayal of the scene. The detection of small streams at the coast was more complete in
the 1972 data and may be the result of any of a number of factors including atmospheric
conditions, vegetation state, and sensor performance. It is also likely that the streams
were swollen at the time the 1972 data was cbllected‘ Discharge data for the Mobile
River indicated a flow approximately one third greater in December of 1972 than in

December, 1973. While the drainage areas for the streams in question are different
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prepared by
NASA/JSC EARTH RESOURCES LABORATORY
NATIONAL SPACE TECHNOLOGY LABORATORIES
BAY ST. LOUIS, MISSISSIPPI

Figure 56. --Shoreline map showing limits of measured area from Landsat
imagery dated December 28, 1972.
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. prepared by
NASA/ISC EARTH RESOURCES LABORATORY
NATIONAL SPACE TECHNOLOGY LABORATORIES

BAY ST. LOUIS, MISSISSIPPI

Figure 57.--Shoreline map showing limits of measured area from Landsat
imagery dated December 5, 1973.
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from the Mobile River basin, the Mobile River conditions were indicative of the entire
area. Differences in the final shoreline measurement are due prinecipally to the dif-
ference in detection of the small streams and marsh land/water features. The tidal
level was almost identical at the time of each image, so sea level change may be ig-
nored. The edge of the screened pattern on the figures shows the inland boundary of
the study area.

The 1972 imagery yielded a land/water interface length in the coastal area of
Alabama of 1,122.3 km (697. 5 mi.), while the 1973 ﬁnagery was found to have a shore-
line length of 878.5 km (546.0 mi.). The analysis of Landsat data considers every de-

tail of the shoreline that is detected atthe resolution of the sensor, which is about 79.2 m

(260 £ft) m the north~-south direction and 58.8 m (193 ft) in the east-west direction. While
the sameé detail may in fact be present in the maps on which the previously published
values are bés’ed, errors can easily be made in attempting to follow intricéte shore-
line features with an opisometer. This type of error would tend to decrease the meas-
urement because of the straightening of the shoreline that would thus be effected.

Deviation between the two satellite-based measurements may be the result of
differences in defining the areas upon which the analysis was performed, small errors
in the factors for scaling and geometric correction of the imagery, or variations in

the classification of land and water features in the scene. The fourth factor includes

Al I BN =N =N B =
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actual geographic changes and misclassifications. This factor is apparent iﬁ the
marsh areas which are much more broken in the 1972 image and probably indicates
a temporary or periodic change in actual surface conditions.

The two shoreline length measurements derived from the Landsat data repre-
sent two distinet conditions. The 1973 data are representative of normal river and
stream conditions while the 1972 data represent the condition associated with high dis-
charge conditions. A Landsat-based measurement of the Alabama shoreline from the
Mississippi state line to 87°42' longitude is 878.5 km (546 mi.) under normal conditions.

As stated above, NASA did not measure the entire shoreline of Alabama, since
the coastal area east of 87°42', near Florida, was omitted. The Geological Survey of
Alabama has derived an estimate of the total shoreline based on application of a ratio™®
obtained through conventional opisometer technigues. If the total length of Alabama's
shoreline were measured using the NASA land/water interface technique, it would meas-

ure approximately 1,313 ki (816 mi.).

* The ratio used is defined as opisometer partial = NASA-~derived partial
opisometer total X

where x = total measurement of shoreline by NASA technique

therefore 680.6 km = 1,900.4km™*
811, 3 km X

and x = 1,313.1 km or 816 mi.

** mean of NASA's 1972 and 1973 partial measurements
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APPENDIX A

Landsat Imagery and Hydrologic Characteristics
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Landsat-1 1050-15560

September 11, 1972

1 meter 3 feet
. o 2
0 1 _ _ L 0
-1

2400 0400 0800 1200 1600 2000 2400 hrs
MAXIMUM CURRENT

Time : Velocity (kts)
0532 e 0.9 ebb
1855 ===m=—mm e ———— -0.9 flood

DISCHARGE CHARACTERISTICS FOR THE ALABAMA-TOMBIGBEE

Total discharge for September 1972---——---——- 15,879.7 m3/s (560, 787 cfs)
September 11, 1972, discharge----=-=——=—===~ 479.6 m3/s (16,938 cfs)
Mean discharge for September 1972----------- 529.4 m3/s (18, 697 cfs)

Iy Ny N A e
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Landsat-1 1086-15562

October 17, 1972

1 meter _ 3 feet
[
J LANDSAT-1 L 2
-/\.l\ L1
0 | L0
-1

2400 0400 0800 1200 11600 2000 2400 hrs

MAXIMUM CURRENT

Time Velocity (kts)
1219 1.4 ebb
PR 15 Y 1.0 flood

DISCHARGE CHARACTERISTICS FOR THE ALABAMA-TOMBIGBEE

Total discharge for October 1972--===~-—==mn- 11,401.5 m3/s (402, 641 cfs)
October 17, 1972, discharge-~—-—--—=—=~——ce——- 292.7 m3/s (10,336 cfs)
Mean discharge for October 1972-————~—————— 367.7 m3/s (12,988 cfs)
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Landsat-1 1158-15564
December 28, 1972

1 meter _ 3 feet
2
1 _ LANDSAT-1 - 1
0 \——I’/ 0
-1

2400 0400 0800 1200 1600 2000 2400 hrs
MAXIMUM CURRENT

Time Velocity (kts)
0102 0.5 ebb
11— 0.8 flood

DISCHARGE CHARACTERISTICS FOR THE ALABAMA-TOMBIGBEE

Total discharge for December 1972---———-=—————— 82,673.8 m3/s (2,919, 602 cfs)
December 28,1972, discharge-----—======—emua—- 2,814.8 m3/s (99, 403 cfs)
Mean discharge for December 1972-==-—————————o- 2,666.6 m3/s (94, 170 cfs)
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Landsat-1 1176-15562

January 15, 1973

1 meter, r3 feet
2
L1
04 L0
L -1

2400 0400 0800 1200 1600 2000 2400 hrs

MAXIMUM CURRENT

Time Velocity (kts)
0183B-—————m e 2.6 ebb
1415 m e e e 2.6 flood

DISCHARGE CHARACTERISTICS FOR THE ALABAMA-TOMBIGBEE

Total discharge for January 1973----——=——=-- 194, 678 m3 /s (6,875,010 cfs)
January 15, 1973, discharge------——---——- 5,678 m3/s (200,518 cfs)
Mean discharge for January 1973--------—-- 4,785 m3/s (168,985 cfs)
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Landsat-1 1194-15564
February 2, 1973
lmeter1 ‘ 3 feet
2
o b 1
LANDSAT-1
0. - 0
, . . . — -1
2400 0400 0800 - 1200 ° 1600 2000 2400 hrs
MAXIMUM CURRENT
Time Velocity (kts)
0429=-~-===mmmmm o 2.1 ebb
1730 - ~-=1.9 flood
DISCHARGE CHARACTERISTICS FOR THE ALABAMA-TOMBIGBEE
Total discharge for February 1973-------~-- 157, 794.2 m3/s (5,572,457 cfs)
February 2, 1973, discharge--------------3,614.6 m3/s (127, 651 cfs)

Mean discharge for February 1973----—---- 3,434.4 m3/s (121,285 cfs):

-‘ -‘ - . - -! - —
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1 meter.
LANDSAT-1

Landsat-1 1302-15565

May 21, 1973

0
-1

! 3 L
2400 0400 0800 1200

1600 2000 2400 hrs

MAXIMUM CURRENT

Velocity (kts)

---2.0 flood
---2.0 ebb

DISCHARGE CHARACTERISTICS FOR THE ALABAMA-TOMBIGBEE

Total discharge for May 1973-=======ncwax
May 21, 1975 discharge------------ ——————
Mean discharge for May 1973---—==ewmem=-

-—----123,518 m3/s (4,361,534 cfs)
______ 1,903 m 3/s (67,196 cfs)
______ 39,881. 6 m3/s (140,594 cfs)
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Landsat-1

1 meter 3 feet
LANDSAT-1 -2
J L1
0] 0
i -1

2400 0400 0800 1200 1600 2000 2400 hrs
MAXIMUM CURRENT

Time Velocity (kts)
0407 =vmm e~ mme e e 1.1 flood
171 S —— 0.9 ebb

DISCHARGE CHARACTERISTICS FOR THE ALABAMA-TOMBIGBEE

Total discharge for September 1973-=====-==== 17,227 m3/s (608,365 cfs)
September 24, 1973, discharge-----=========n 500 m3/s (17,687 cfs)
Mean discharge for September 1973--==v=m==w- 536.6 m3/s (18,953 cfs)

1428-15550

September 24, 1973

r 0
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Landsat-1 1482-15541

November 17, 1973

1 meter -3 feet
- 2
| LANDSAT-1 1
o \’\———"/ 0
{ i A = 1

2400 0400 0800 1200 1600 2000 2400 hrs

MAXIMUM CURRENT

Time Velocity (kts)
0924 —————— e 1.5 ebb
2148 1.0 flood

DISCHARGE CHARACTERISTICS FOR THE ALABAMA~TOMBIGBEE

Total discharge for November 1973 -~---———-—— 26,012.7 m3/s (918, 633 cfs)
November 17, 1973, discharge--—---———=-e—eun 642.3 m3/s (22, 684 cfs)
Mean discharge for November 1973---==-=m-=— 810.5 m3/s (28, 623 cfs)
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Landsat-1 1500-15535

December 5, 1973

1 meter, _ 3 feet
2
1 LANDSAT-1 1
0.\,'/'/ L o
-1

2400 0400 0800 1200 1600 2000 2400 hrs

MAXIMUM CURRENT

Time Velocity (kts)
0146===mmmmmm e 0.7 ebb
1430 ——==-m=—— e 0.8 flood

DISCHARGE CHARACTERISTICS FOR THE ALABAMA-TOMBIGBEE

Total discharge for December 1973-~=—===-==-- 73,054 m3/s (2,579, 885 cfs)
December 5, 1973, discharge--—--——-=————=—-~ 2,220.9 m3/s (78,431 cfs)
Mean discharge for December 1973----------- 2,666.6 m3/s (94, 171 cfs)
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1 meter, - . 3 feet
LANDSAT-1 2
1 /- 1
0] t 0
-1

2400 0400 0800 1200 1600 2000 2400 hrs

MAXIMUM CURRENT

Time Velocity (kts)
0849 ——--=======-——— - 2.1 ebb
2111----======mmm—m— 2.1 flood

DISCHARGE CHARACTERISTICS FOR THE ALABAMA-TOMBIGBEE

No data available
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1 meter 3 feet
| 2
| LANDSAT-1 | 1
0; L 0
-1

2400 . 0400 0800 1200 1600 2000 2400 hrs -

MAXIMUM CURRENT

Time Velocity (kts)
0241 ————— e 1.6 ebb
1553 === =======m—m—m———- 1.7 flood

DISCHARGE CHARACTERISTICS FOR THE ALABAMA-TOMBIGBEE

No data available

Landsat-1 1842-15441

November 12, 1974
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APPENDIX B

Source Material and Hydrologic Data
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Table 1. ~-~Selected photographic coverage available for Mobile Bay

Type of acquisition
platform

Landsat-1

Skylab 3

Skylab 4

U-2 aircraft

RB-57 F aircraft

Low=-altitude aircraft

Data
type, format

Prints-transparencies, B&W and

a few color composites
Scale: 1:3,369,000 to 1:250, 000

B&W, color, and color IR prints
or transparencies
Scale: 1:2,850,000 to 1:250, 000

B&W, color, and color IR prints
or transparencies
Scale: 1:2,850,000 to 1:250,000

Color IR
Scale: 1:130,000

Color IR
Scale: 1:130,000

Color IR
Scale: 1:130,000

Color IR (post-hurricane Camille,
quite a few clouds)
Scale; 1:130,000

B&W photos and photo mosaics
Scale: 1:20,000 and 1:63360

Date of

photography

9-11-72
9-29-72
10-17-72
12-28-72
1-15-73
2- 2-73
5~21-73
9-24-73
10-30-73
11-17-73
12- 5-73
6-21-74
9-19-74
10- 7-74
11-12-74

8- 5-73

1-21-74

9-24-72

2-22-73

10-17~74

8-19-69

1938, 1940,
1949, 1950,
1955, 1960,
1966

. - uy

-

L ' ) 3
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Table 2.--Monthly discharge averages for the Alabama River (1931-1965) and
Tombigbee River (1929-1960)*

Monthly M3 /s £t3 /s
Octobef | 566.1 19,989. 7
November 835.1 29,489.2
December 1,600.0 56,496.0
January 2,646.6 93,453.8
February 3,349.0 118,256.4
March 3,824.5 135,044.7
April 3,563.9 125,842.7
May 1,736.6 61,321.7
June '914.2 _ 32,281.9
July 914.8 32,308.3
August 744.4 26,285.6
Septembgr 579.5 . 20,462.7

NOTE: In order to obtain the full discharge into Mobile Bay, the figures for the
combined rivers were mul tiplied by 1. 07.

* Source: U.S. Geological Survey, Surface Water Records, 1929-1960.
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Table 3.~-Suspended sediment (12-year monthly average) Tombigbee and Alabama
River systems from 1952 to 1963

(Compiled from unpublished data, U.S. Corps of Engineers, Mobile District) ‘

 Tombigbee River Alabama River . Combined

Month M. tons __ Sh. tons M. tons _ Sh. tons M. tons _ Sh. tons
January 304,454  (335,661) “ 218,502 (240, 899) 522,956 (576,560)
February 470,903 (519,171) 349,988 (385,863) 820,892 (9'05, 034)
March 506,559  (558,482) 429,001 (472,974) 9354, 560 (1,031,456)
April 343,529  (378,742) 39'), 015 (437,710) 740,545 (816, 452)
May 164,647 (181,524) 187,768 (207,015) 352,416 (388,539)
June 43,766 ( 48,253) 102,116 (112,583) 145,882 (160,836)
July 65,272 (71, 963) 79,899 ( 88,089) 1V45’, 171 (160, 052)
August 11,163 ( 12,308) 38,657 ( 42,620) 49,821 ( 54,928)
September 12,511  ( 13,794) 44,640 ( 49,216) 57,151 ( 63,010)
Dctober 16,934 ( 18,670) 40,408 ( 44,550) 57,342 ( 63,220)
November 59,436 { 65,529) 47,137 ( 51,969) 106,574 (117,498)
December 173,324  (191,090) 169, 315 (186,670) 34_2¢639 (377, 760)

Atn::mlal 2,172,503 (2,395,187) 2,104,446(2,320,158) 4,276,949(4, 715, 345)

otals . .

1. Based on daily suspended sediment data.
2. Station near Leroy, Ala.

3. Station at Claiborne, Ala.

(After Ryan 1969)
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Table 4.--Yearly discharge averages into Mobile Bay by the Alabama-Tombighee

Rivers (1931-1974)
Year
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947

1948

153

M3/s

1,052.
1,837.
2, 630.
1,066.
1,767.
1,985.
1,922.
1,850.
1,835.
1,636.
1,066.
1, 342.
1,623.
2,012.
1, 606.
2, 580.
2, 158.

1,964.

7

£t3 /5

37,171.
64,874,
92,897.
37,674.
62,413,
70, 095.
67,891.
65, 344.
64,809.
57, 780.
37, 653.
47,411.
57,330.
71, 058.
56, 742.
91, 110.
76,226.

69,357.



Table 4. --Yearly discharge averages into Mobile Bay by the Alabama-Tombigbee

Rivers (1931-1974)--Continued
ear .
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965

1966

154

it3/s
107, 706.
59,481.
61,589.
52,430.
60, 604.
38, 755.
44,415.
46,855.
53,596.
76,515.
47,508,
57,587.
79,287.
88,895.
48,021,
82,058,
61,321.

53,478,
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Table 4.--Yearly discharge averages into Mobile Bay by the Alabama-Tombigbee

Rivers--Continued

Year

1967

1968

1969

1970

1971

1972

- 1973

1974

155

M /s
1,259.0
1,969.3
1,500.2
1,456,0
1,994.2
1,760.5
2,726. 6

2,278.7

3 /s

44,458,
69, 539.
52,975.
51,413.
70,416.
62,167.
96,278.

80,464.



Table 5.--

U.S.G6.S. 7%' Quadrangles

Mobile
Hollingers Island -

Belle fontaine

Little Dauphin Island

Heron Bay

Isle aux Herbes
Kreole

Grand Bay S. W,
Grand Bay

Coden

Petit Bois Island
Fort Morgan N. W.
Fort Morgan
Bridgehead

Daphne

* Point Clear

Lillian
W. Pensacola

Perdido Bay

U.S8.G,S, 15' Quadrangles

Weeks Bay
Grand Bay -

Foley

156

Selected charts and maps available for the Alabama coastal area

Publication Date

1953-1967

1953-1967
1956
1958
1958
1958
1958
1958
1967
1956
1958

~1958
1958

1953-1967

1953-1967
1956
1970
1970

1970

1941 -
1958

1941 -

: 1 T
-y - -
4

. A ‘ \
y

i A ;
- - -r

ap e.
a

o o an

d i

‘



o8 OB .

a W

\y. N N
M U E o a8 98 @

157

Table 5.--Selected charts and maps available for the Alabama coastal area--
Continued

U.8.G.S. 1:250,000 National Topographic Maps
Penéacola, Fla,; Ala. 1957-1970
Mobile, Ala.; Miss. ; La. 1953-1970
U.8.G.S. 1:500,000 Base map of Alabama

1966

National Ocean Survey Nautical Charts

Char£ No. Scale Date

91 1:80,000 1860

187 1:80,000 1897

187 1:80,000 1916>

188 1:80,000 1909

188 1:80,000 1894

189 1:80,000 1894

189 1:80,000 1909

189 1:80,000 1918

874 1:40,000 1947

1266 1:80,000 1921

1266 1:80,000 1929
&1266. 1:80,000 1943
1266 1:80,000 1973

1267 1:80,000 1920

1267 1:80,000 1921

1267 » 1:80,000 © 1933

1267 ' 1:80,000 1944
11374 (Formerly 874-SC)  1:40,000 1974
11378 (Formerly 874-SC) 1:40,000 1974



Table 5.--

158

Selected charts and maps available for the Alabama coastal area--

Continued

Miscellaneous U,S.C. & G,S, Topographic Sheets

1:40,000-Scale

3702 1917
3711 1917
3712 1918
3713 1918
3714 1918
3716 1918-1919
1:10,000-Scale

5497 1934
5498 1934
5528 1934
5529 1934
5530 1934
5531 1934
5532 Supp. 1934
5533 1934
5534 1934
5535 1934
5536 1934
5537 1934

Miscellaneous Maps

Carte de L'Isle Dauphine, ses Environs, par le
ST DuSault, 1917

Historic Dauphin Island, by E. Wilson, 1971
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APPENDIX C

Automatic Processing of Satellite Data for Shoreline Measurement
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APPENDIX C
AUTOMATIC PROCESSING OF SATELLITE DATA
FOR SHORELINE MEASUREMENT

The NASA satellite Landsat (formerly the Earth Resources Technology
Satellite) prbvides imagery of the earth's surface in a format suited for auto-
matic processing. Analysis of the light inter;sity in different regions of the opti-
cal spectrum allows one to discriminate land from water. Further processing
makes possible the measurement of the land/water interface and generation of
a thematic presentation showing the land and water and the shoreline that was

measured.

Data Acquisition System
The sensor used to acquire data on Landsat is a multispectral scanner. This

- is a device which, at any given instant in time, views a very small area approxi-

- mately 79 m (259 ft) on a side. This area is called the instantaneous field of view
(IFOV) of the sensor. The IFOV is scanned along a line perpendicular to the motion
of the satellite, which itself travels along a line oriented approximately north-south.
The extent of the scan is about 5 degrees from nadir in either direction aéross the -
satellite ground track, and results in a coverage of 185 km (100 nautical mi.) in an
east-west directjon. By the time that the system completes one scan and is ready to

scan again, the satellite has moved down its track and the next scan line is offset from
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the previous line, The data taken at this time is adjacent to the previous line of
data, and juxtaposition of successive scan lines generated in this way produces
the two-dimensional image.

As the term multispectral implies, the scanner is viewing the earth beneath
in different regions of the electromagnetic spectrum. The radiation received by
the scanner is broken down into green light (0.5-0. 6 micrometers (um) ), red
light (0.6-0.7 pm), and two bands of infrared light (0.7-0.8 and 0.8-1.1 um). The
intensity of the radiation in each of these four spectral bands is simultaneously
measured and recorded for each picture element, which is de_fined as an individual
sample point on the scan line. The picture element represents a spot on the earth
with dimensions of about 79 by 58 m (259 by 190 ft).

'Multispectral scanner data is well suited for earth surface studies because
the data from each of the four spectral bands are readily available in a computer-
compatible form for automatic processing. Spectral signature analysis can be per-
formed directly on this data to generatevimages, with each picture element classified
into predetermined categories. For shoreline analysis, the computer is programmed
to recognize the spectral signature of water and to classify those picture elements
which it recognizes to be water, and to leave all other picture elements unclassified,
which set then corresponds to land.

There are problems involved with the use of this type of data for analysis of
surface features, notably the geometric distortions inherent with scanner data. Cor-

rections can be made for rotation of the earth beneath the satellite, the angular
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displacement of the scan direction from the exact perpendicular to the satellite
ground track, and variation of the width of the picture elements along the scan
line. First-order corrections for the earth rotation and for the varying picture
element size were made in the shoreline length analysis described in this docu-
ment, while the second problem was deemed to have a negligible effect. Better
correction techniques now exist, and are being implemented, but were not avail-

able at the time this work was performed.

Procedure for Shoreline Measurement

There are nine basic steps outlined in figure C1:that are required to derive
a display showing land, water, and shoreline and the length of the shoreline from
the Landsat multispectral scanner data. The data are originally provided in the
form of a film image of the earth scene as recorded for each of the four spectral
channels. Initial examination of the film images determines the suitability of the
frame of data for analysis - whether the area to be studied is completely included
in the frame, whether clouds will interfere with the analysis, and so on. If the
frame is suitable for analysis, the digital magnetic tapes containing the values
of light intensity for each spectral band for each picture element are obtained.
All subsequent work is based on these digital data.

The next step in the procedure is to determine the spectral signature of

water so that the computer can be instructed to recognize water and classify it.

n d & ” ' by !
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Figure Cl.--Flow of processing to perform shoreline

Landsat MSS data.
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Areas known to bé land and areas known to be water are located in the data. Values

of radiation intenéity in the green and second infrared spectral bands are then ex-
tracted for each of the picture elements in these land and water areas. These areas
are known as training samples because data from them are used to "train'' the com-
puter to recognize .the two categories. ’A graph with axes representing the green-band

intensity and the infrared-band intensity is developed, with data points corresponding

toland features differentiated from those which correspond to water features (fig. C2).
A line is then drawn through the data that best separatesthe two sets of points. This
line defines the land/water discriminator that will then classify each picture element
on the basis of intensity of green and infrared light. The second infrared band alone
provides a very good definition of land and water because water strongly absorbs
radiation in that spectral region, where very strong reflectance is typical of land
features. The intensity of green light reflected from the area being classified serves
to adjust the decision point in the infrared for varying tgrbidity levels of the water,
which can cause problems in areas of muddy river discharges and marshes.

The third step in the procedure is to examine each data point in the frame and
compare the light-intensity measurements in the green and infrared bands to the
land/water decision curve. The computer tests these data and determines whether
they match more closely the spectral signature of land or of water, and then classi-

fies accordingly that picture element. From this classification process, a new
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Figure C2.--Land/water discrimination using Landsat MSS data.
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magnetic tape is generated that portrays each picture element with a code cor-

. .L€Sponding to either land or water. After the image is classified, it is then

Elo;ely éXamined and compared to aerial photography of the area acquired

«.,__Wi’.dlrlin,.,a*reasénable timé pefiod of the satellite data acquisition.” The accepta-

: ble time pefiod is determined by tixe rate of chénge of the geography and the
problems expe¢ted in the classification. Marsh areas generally are the most
difficult to classify and also the most dynamic, so when marsh areas are to
be elassiﬁed thefe' should be aerial photography for comparison not more than
a year or two before or after the date of the satellite image. If the comparison
shows that there are serious discrepancies between thé classification a.nd the
visual interpretation of the photography, the land/water discriminator must be
modified. The most common cause for such discrepahcies is that the training
samples are not representative of all regions found in the data set. After modi-
fying". the discriminafof, the classification process is repeated and the results are
compared to the photography. Thése steps are repeated until a satisfactory land/

~ water thematic has been generated. - 7

Becaus-e a Landsat image will typically contain not only the immediate coastal
area in which one wants to measure the land/ water interface, but also the inland
region containing small ponds, lakes, creeks, and rivers, the coastal area must

be isolated. The image is displayed and the limits of the area to be analyzed are

o
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determined. The code for each picture element outside the area of consideration
is then switched frém either land or water to a third code that will be recognized
by subsequent cqmputer analysis and ignored. The iin'age is then ready for de-
tection and measurement of the shoreline.

The satellite data must be scaled accurately for the shoreline measurement
to be meaningful. Nominal values are given for the picture element dimensiohs,
\but;i‘these may vary significantly. Good results have been obtained in scaling the
data by locating points identifiable in the satellite imagery on accurate maps. The
distances between these points are measured on the maps, and the number of picﬁife‘
elements separating the points in the satellite imagery along the scan direction and
perp_endicular‘ to it are determined. In addition to the simple scaling, a correc,ti,o’n
must be made for the rotation of fhe vearth beneath the satellite, referred to as skew
corxfectiOn. Both the scaling and skew correction factor are determingd using dis~
tances measured on the map and in terms of-picture element offsets in the image.
A least squares error technique is u_sed to compute the picture element "width" and
"liéight" and the skew corréctiori féctor; which is consistently equivalent to approxi=
inately one elément offset evéx& 'eleven'.scan' lines.
| With these factors détermined, the shoreline may be detected and measured.

A shoreline element is defined as the edge of an element of water which is adjacent
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-to an element of land. A two element wide and two element high "window" is
scanned over the classj:fied image, and each element of €horeline is noted.
There are four basic types of shoreline elements: horizontal (two water elements
in one scan line, two land in the other); vertical (the first elemeﬁt of ea;:h scan
line within the window is land and the second is water); diagonal (fig. 63); and
corner (fig. .C4). Each of these types has a different length, so the number ;f
each type of shoreline elemvclant is accumulated for the entire image. After scan-
nmg the entire image, the number of each type of shoreline elgment is»m-ultiplied‘
‘by the length for the respective type, and these prqducts are then summed to _give
the total interface length.

The horizontal and vertical elements contribute one picture element width
and'height respectively. The diagonal céntribution is the square root of the sum of
the squares of the width and height, corresponding exactly to the d;ag'onai méasure
of the picture element. Because sharp corners are not typical of nat;urél séeneS5
?che contribution of such apparent features is that of a rounded corner; thg iengfh
bei.ng oﬁe half the width plus one half the height of the picture element, plus one
quarter of the average of the perimeters of the ellipses that can be inscribed and
circumscribed on the picture element.

The computer program that detects and measures shoreline also generatgs a

new image of the scene. This image has been modified from that generated by the
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Figure C3.--One configuration of land (1) and water (2) which indicates
a diagonal interface feature. Shaded area is examination window. -

- Figure C4. —-bne.conﬁguration of land (1) and water (2) which indicates a

‘corner interface feature which must be rounded in the length computation.
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land/water classifier to show as a fourth class every element of water found to
be adjacent to an element of land. The shoreline image, as this new image is

called, shows land, water, shoreline, and areas excluded from analysis.
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